## E OPTIMIST CLASSES IIT-JAM TOPPERS



ANOJ KUMAR SINGH





PAWAN



SATYAM



SOUMIL GIRISH SAHU



BHOOMIJA



AKSHITAGGARWAL



SHIKHAR CHAMOL



RAVI SINGH ADHIKARI



**GAURAV JHA** 



**SWAPNILJOSHI** 



LOKESH BHAT







# CSIR-NET-JRF RESULTS



ANNU OPTI



\_\_\_\_AAR UP15000162 ALANKAR





**JAYESTHI** RJ11000161



**DASRATH** RJ06000682



VIVEK UK01000439



**UZAIR AHMED** UP02000246



SURYA PRATAP SINGH RJ06000232





CHANDAN RJ09000159



SAIKHOM JOHNSON MN01000196



**AJAY SAINI** RJ06001744



VIKAS YADAV RJ06001102



JYOTSNA KOHLI UK02000262



SHYAM SUNDAR

## THE OPTIMIST CLASSES

#### AN INSTITUTE FOR NET-JRF/GATE/IIT-JAM/JEST/TIFR/M.Sc ENTRANCE EXAMS

CONTACT: 9871044043

### **GATE PAPER 2003**



233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

| TIME CLASS TES THEOP TIMES CLASS TE OP I THEOP TO STATE OF IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Q8. An electric charge, $+Q$ is placed on the surface of a solid, conduction sphere of radius $a$ . The distance mea sured from the centre of the sphere is denoted as $r$ . Then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (a) The charge gets distributed uniformly through the volume of the sphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| (b) The electrostatic potential has the same value for $r < a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| sured from the centre of the sphere is denoted as $r$ . Then:  (a) The charge gets distributed uniformly through the volume of the sphere  (b) The electrostatic potential has the same value for $r < a$ (c) An equal and opposite charge gets induced in the bottom half of the sphere  (d) The electric field is given by $1/(4\pi\epsilon_0 r^2)$ for $r < a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| (d) The electric field is given by $1/(4\pi\varepsilon_0 r^2)$ for $r < a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Q9. An electric field applied along the length of a long cylinder produces a polarization <i>P</i> . The depolarization field produced in this configuration is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (a) $4\pi P/3$ (b) $-4\pi P/3$ (c) $2\pi P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Q10. Which one the the following Maxwell's equations implies the absence of magnetic monopoles?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| produced in this configuration is :  (a) $4\pi P/3$ (b) $-4\pi P/3$ (c) $2\pi P$ (d) 0  Q10. Which one the the following Maxwell's equations implies the absence of magnetic monopoles?  (a) $\vec{\nabla} \cdot \vec{E} = \pi / \varepsilon_0$ (b) $\vec{\nabla} \cdot \vec{B} = 0$ (c) $\vec{\nabla} \times \vec{E} = -\partial B / \partial t$ (d) $\vec{\nabla} \times \vec{B} = \left(1/c^2\right) \partial \vec{B} / \partial t + \mu_0 \vec{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| O11 An electromagnetic wave is propagating in free space in the z-direction. If the electric field is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $E = \cos(\omega t - kz)i$ , where $\omega t = ck$ , then the magnetic field is given by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (a) $B = (1/c)\cos(\omega t - kz)j$ (b) $B = (1/c)\sin(\omega t - kz)j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| E = $\cos(\omega t - kz)i$ , where $\omega t = ck$ , then the magnetic field is given by:  (a) $B = (1/c)\cos(\omega t - kz)j$ (b) $B = (1/c)\sin(\omega t - kz)j$ (c) $B = (1/c)\cos(\omega t - kz)i$ (d) $B = (1/c)\sin(\omega t - kz)i$ Q12. Given a wave with the dispersion relation $\omega = ck + m$ for $k > 0$ and $m > 0$ , which one of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Q12. Given a wave with the dispersion relation $\omega = ck + m$ for $k > 0$ and $m > 0$ , which one of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| (a) The group velocity is greater than the phase velocity (b) The group velocity is less than the phase velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (c) The group velocity and the phase velocity are equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (d) There is no definite relation between the group velocity and the phase velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Q13. Which of the following is a valid normalized wave function for a particle in a one dimensional infinite potential well of width L centred at $x = 0$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| (a) $(2/L) \left[\cos\left(2\pi x/L\right) + \sin\left(2\pi x/L\right)\right]$ (b) $(2/L)^{1/2} \sin\left[n\pi x/L\right]$ for odd $n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| (c) $(2/L)^{1/2} \cos[n\pi x/L]$ for odd $n$ (d) $(2/L)\cos(\pi x/L)$ Q14. The commutator $[x, P^2]$ , where $x$ and $P$ are position and momentum operators respectively, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| OPTIME (C) (2/2) September 10 Till 10 County (2) (2) (2) (2) (2) (2) (3) (4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Q14. The commutator $[x, P^2]$ , where $x$ and $P$ are position and momentum operators respectively, is  (a) $2i\hbar P$ (b) $-i\hbar P$ (c) $2i\hbar xP$ (d) $-2i\hbar xP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| (a) $(2/L) [\cos(2\pi x/L) + \sin(2\pi x/L)]$ (b) $(2/L)^{n/2} \sin[n\pi x/L]$ for odd $n$<br>(c) $(2/L)^{1/2} \cos[n\pi x/L]$ for odd $n$ (d) $(2/L)\cos(\pi x/L)$<br>Q14. The commutator $[x, P^2]$ , where $x$ and $P$ are position and momentum operators respectively, is (a) $2i\hbar P$ (b) $-i\hbar P$ (c) $2i\hbar xP$ (d) $-2i\hbar xP$ Q15. A spin half particle is in the state $S_z = \frac{\hbar}{2}$ . The expectation values of $S_x$ , $S_x^2$ , $S_y$ are given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ES THE OFTIME STOLE SSES THE A STIME OF CLASS SEE STIE OF THAT STEELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Q15. A spin half particle is in the state $S_z = \frac{1}{2}$ . The expectation values of $S_x$ , $S_x^2$ , $S_y$ , are given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (a) $0 0 \pm \frac{1}{2} = \frac{1}{4} \pm \frac{1}{4} = \frac{1}$ |  |
| Q15. A spin half particle is in the state $S_z = \frac{\hbar}{2}$ . The expectation values of $S_x$ , $S_x^2$ , $S_y$ , $S_y^2$ are given by  (a) $0,0,\hbar^2/4,\hbar^2/4$ (b) $0,\hbar^2/4,\hbar^2/4,0$ (c) $0,\hbar^2/4,0,\hbar^2/4$ (d) $\hbar^2/4,\hbar^2/4,0,0$ Q16. The spectral term for the atom with 70% subshell and only $S = 3/2$ is  (a) ${}^3P_0$ (b) ${}^4F_{9/2}$ (c) ${}^3F_{1/2}$ (d) ${}^4P_{1/2}$ Q17. The hyperfine splitting of the spectral lines of an atom is due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Q16. The spectral term for the atom with 70% subshell and only $S = 3/2$ is  (a) ${}^{3}P_{0}$ (b) ${}^{4}F_{9/2}$ (c) ${}^{3}F_{1/2}$ (d) ${}^{4}P_{1/2}$ Q17. The hyperfine splitting of the spectral lines of an atom is due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Q17. The hyperfine splitting of the spectral lines of an atom is due to  (a) the coupling between the spins of two or more electrons  (b) the coupling between the spins and the orbital angular momenta of the electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (a) the coupling between the spins of two or more electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| (b) the counting between the spins and the orbital angular momenta of the electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (a) the coupling between the spins and the midler chin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| (c) the coupling between the electron spins and the nuclear spin  (d) the effect of external electromagnetic fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| <ul> <li>(c) the coupling between the electron spins and the nuclear spin</li> <li>(d) the effect of external electromagnetic fields</li> <li>Q18. A piston containing an ideal gas is originally in the state X (see figure). The gas is taken through a thermal cycle X → Y → X as shown:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| (c) the coupling between the electron spins and the nuclear spin (d) the effect of external electromagnetic fields Q18. A piston containing an ideal gas is originally in the state X (see figure). The gas is taken through a thermal cycle $X \to Y \to X \text{ as shown:}$ 233, FIRST FLOOR, LAXMI NAGAR DELHI-110092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

The work done by the gas is positive if the direction of the thermal cycle is:

- (a) clockwise
- (b) counter clockwise
- (c) neither clockwise nor counter clockwise
- (d) clockwise from  $X \rightarrow Y$  and counter clockwise from  $Y \rightarrow X$ .



- Q19. A second order phase transition is one in which
  - (a) the plot of entropy as a function of temperatue shows a discontinuity.
  - (b) the plot of specific heat as a function of temperature shows a discontinuity.
  - (c) the plot of volume as a function of pressure shows a discontinuity.
  - (d) the plot of comprehensibility as a function of temperature is continuous.
- Q20. Consider the Fermi-Dirac distribution function f(E) at room temperature (300K) where E refers to energy. If  $E_F$  is the Fermi energy, which of the following is true?
  - (a) f(E) is a step function
  - (b)  $f(E_E)$  has a value of 1/2
  - (c) States with  $E < E_F$  are filled completely
  - (d) f(E) is large and tends to infinity as E decreases much below  $E_{E}$
- Q21. If the ionic radii of Mn and S are 0.80 and 0.184nm respectively, the structure of MnS will be
  - (a) cubic closed packed

(b) body centered cubic

(c) NaC1 type

- (d) primitive cubic cell
- Q22. A cubic cell consists of two atoms of masses  $m_1$  and  $m_2$  ( $m_1 > m_2$ ) with  $m_1$  and  $m_2$  atoms situated on alternate planes. Assuming only nearest neighbor interactions, the centre of mass of the two atoms
  - (a) moves with the atoms in the optical mode and remains fixed in the acoustic mode
  - (b) remains fixed in the optical mode and moves with the atoms in the acoustic mode
  - (c) remains fixed in both optical and acoustic modes
  - (d) moves with the atoms in both optical and acoustic modes
- Q23. In simple metals the phonon contribution to the electrical resistivity at temperature T is
  - (a) directly proportional to T above Debye temperature and to 'T3' below it
  - (b) inversely proportional to *T* for all temperatures
  - (c) independent of T for all temperature
  - (d) directly proportional to T above Debye temperature and to  $T^5$  below it
- Q24. The effective mass of an electron in a semiconductor can be
  - (a) negative near the bottom of the band
- (b) a scalar quantity with a small magnitude
- (c) zero at the center of the band
- (d) negative near the top of the band
- Q25. The dielectric constant of water is 80. However its refractive index is 1.75 invalidating the expression  $n = \varepsilon^{1/2}$ . This is because
  - (a) the water molecule has a permanent dipole moment
  - (b) the boiling point of water is  $100^{\circ}C$
  - (c) the two quantities are measured in different experiments
  - (d) water is transparent to visible light
- Q26. The nucleus of the atom  ${}^{9}Be_{4}$  consists of
  - (a) 13 up quarks and 13 down quarks
- (b) 13 up quarks and 14 down quarks
- (c) 14 up quarks and 13 down quarks
- (d) 14 up quarks and 14 down quarks
- Q27. Which one of the following nuclear reactions is possible?
  - (a)  $^{14}N_7 \rightarrow ^{13}C_6 + \beta^+ + \nu_c$

(b)  $^{13}N_7 \rightarrow {}^{13}C_6 + \beta^+ + \nu_6$ 

#### 233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

|         | OPTIM    | (c) $^{13}N_7 \rightarrow ^{13}C_6 + \beta^+$ (d) $^{13}N_7 \rightarrow ^{13}C_7 + \beta^+ + \nu_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TH      | Q28.     | Suppose that a neutron at rest in free space decays into a proton and an electron. This process would violate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SSES    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OLASE!  | ASSES    | (a) conservation of charge (b) conservation of energy (c) conservation of linear momentum (d) conservation of angular momentum  Which one of the following is TRUE for a semiconductor <i>pn</i> junction with no external bias?  (a) The total charge in the junction is not conserved (b) The <i>p</i> side of the junction is positively charged (c) The <i>p</i> side of the junction is negative charged (d) No charge develops anywhere in the junction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PIIMIS  | Q30.     | Which one of the set of values given below does NOT satisfy the Boolean relation $R = PQ'$ (where $Q'$ denotes NOT $Q$ )?  (a) $P = 1$ , $Q = 1$ , $R = 0$ (b) $P = 1$ , $Q = 1$ , $R = 1$ (c) $P = 0$ , $Q = 0$ , $R = 0$ (d) $P = 0$ , $Q = 1$ , $R = 1$ Q.31 - Q.90: Carry ONE mark each.  The curl of the vector $A = zi + xj + yk$ is given by  (a) $i + j + k$ (b) $i - j + k$ (c) $i + j - k$ (d) $-i - j - k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IE OP'I | TIME     | (a) $P=1$ , $Q=1$ , $R=0$ (b) $P=1$ , $Q=1$ , $R=1$ (c) $P=0$ , $Q=0$ , $R=0$ (d) $P=0$ , $Q=1$ , $R=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| THE     | 5P 1     | Q.31 - Q.90: Carry ONE mark each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | Q31.     | The curl of the vector $A = zi + xj + yk$ is given by  (a) $i + i + k$ (b) $i - i + k$ (c) $i + i - k$ (d) $-i - i - k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SES     |          | Cartiful 1 15 Cartiful 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| , SE    | Q32.     | Consider the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0$ . At time $t = 0$ , it is given that $x = 1$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LAS     | cSES "   | (a) $1/e$ (b) $2/e$ (c) 1 (d) $3/e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STOLA   | Q33.E    | number of independent components of $S_{ii}$ and $A_{ii}$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OPTIM   | Q34.     | Consider the four statements given below about the function $f(x) = x^4 - x^2$ in the range $-\infty < x < +\infty$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| THEO    | E OF THE | (a) 3 and 6 respectively (b) 6 and 3 respectively (c) 6 and 6 respectively (d) 9 and 6 respectively  Consider the four statements given below about the function $f(x) = x^4 - x^2$ in the range $-\infty < x < +\infty$ . Which one of the following statements is correct?  P the plot of $f(x)$ versus $x$ has two maxima and two minima Q the plot of $f(x)$ versus $x$ to the $x$ -axis at four points  R the plot of $f(x)$ versus $x$ has three extrema  S no part of the plat $f(x)$ versus $x$ lies in the fourth quadrant  Pick the right combination of correct choices from those given below  (a) P and R  (b) R only  (c) R and S  (d) P and Q  The Fourier transform of the function $f(x)$ is $F(x) = \int e^{ikx} f(x) dx$ . The Fourier transform of $df(x)/dx$ is  (a) $dF(k)/dk$ (b) $\int F(k)/dk$ (c) $-ikF(k)$ (d) $ikF(k)$ A particle of mass $m$ is moving in a potential of the form $V(x,y,z) = (1/2)m\omega^2(3x^2 + 3y^2 + 2z^2 + 2xy)$ . The oscillation frequencies of the three normal modes of the particle are given by |
| ASSES   | The Th   | Pick the right combination of correct choices from those given below (a) P and R (b) R only (c) R and S (d) P and Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| JAS     | Q35.     | The Fourier transform of the function $f(x)$ is $F(k) = \int e^{ikx} f(x) dx$ . The Fourier transform of $df(x)/dx$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S C S C | LASSE    | The Fourier transform of the function $f(x)$ is $F(k) = \int e^{ikx} f(x) dx$ . The Fourier transform of $df(x)/dx$ is (a) $dF(k)/dk$ (b) $\int F(k)/dk$ (c) $-ikF(k)$ (d) $ikF(k)$ A particle of mass $m$ is moving in a potential of the form $V(x,y,z) = (1/2)m\omega^2(3x^2 + 3y^2 + 2z^2 + 2xy)$ . The oscillation frequencies of the three normal modes of the particle are given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIL     | Q36.     | A particle of mass m is moving in a potential of the form $V(x, y, z) = (1/2)m\omega^2(3x^2 + 3y^2 + 2z^2 + 2xy)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PIMI    | ast C    | The oscillation frequencies of the three normal modes of the particle are given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| JP TIME | TIMIL OF | (a) $dF(k)/dk$ (b) $\int F(k)/dk$ (c) $-ikF(k)$ (d) $ikF(k)$ A particle of mass $m$ is moving in a potential of the form $V(x,y,z) = (1/2)m\omega^2(3x^2 + 3y^2 + 2z^2 + 2xy)$ . The oscillation frequencies of the three normal modes of the particle are given by  (a) $\omega$ , $\sqrt{3}\omega$ and $\sqrt{3}\omega$ (b) $\sqrt{2}\omega$ , $\sqrt{3}\omega$ and $\sqrt{3}\omega$ (c) $\sqrt{2}\omega$ , $\sqrt{2}\omega$ and $2\omega$ (d) $\sqrt{2}\omega$ , $2\omega$ and $2\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HIL     | OPTIME   | (c) $\sqrt{2}\omega \sqrt{2}\omega$ and $2\omega$ (d) $\sqrt{2}\omega 2\omega$ and $2\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

a)  $\omega$ ,  $\sqrt{3}\omega$  and  $\sqrt{3}\omega$ 

(d)  $\sqrt{2}\omega$ ,  $2\omega$  and  $2\omega$ 

| Q37.              | The speed of a particle in vacuum)                                                                                                 | whose kinetic energy is                                                                                                                | equal to its rest mass ene                                                  | orgy is given by (c is the speed of light                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| THE OF            | in vacuum)  (a) $c/3$                                                                                                              | (b) $\sqrt{2}c/3$                                                                                                                      | (c) cy21 Asstes                                                             | (d) $\frac{\sqrt{3}}{2}c$                                                                         |
| Q38.              | Electromagnetic waves                                                                                                              | are propagating along a requency of the electroma                                                                                      | hollow, metallic wavegu                                                     | ide whose cross-section is a square of                                                            |
| SSED              | (a) c/W                                                                                                                            | (b) $2c/W$                                                                                                                             | (c) $\pi c/W$                                                               | (d) $\sqrt{2}\pi c/W$ (if or the original classic charges)                                        |
| Q39.SI<br>CLASICI | region of free space P Both E and B as Q Both E and B as R E and B are mut                                                         | rements about $E(r, t)$ and reconservative vector fixe central force fields tually perpendicular in the strength of a moving charge in | elds $(r, t)$ , The electric an                                             | d magnetic vectors respectively in a                                                              |
| B. J.             | Choose the right combine (a) P and R                                                                                               | nation of correct stateme (b) R and S                                                                                                  | ents from the following: (c) S only                                         | (d) P and Q                                                                                       |
| Q40.              | field B for $z > 0$ is:                                                                                                            | OX.                                                                                                                                    | MS)                                                                         | sity $K$ along the $y$ -axis. The magnetic<br>(d) $B = \mu_0 K \hat{j} / (x^2 + z^2)^{0.5}$       |
| Q41.              | A parallel beam of infra<br>slits $5 \times 10^{-6} m$ apart an                                                                    | red radiation of wavelen                                                                                                               | gth of $1.01 \times 10^{-6} m$ is in the new pattern is observed of screen? | ncident normally on a screen with two n a distant screen. What is the largest (d) infinitely many |
| Q42. A            | A parallel beam of election diffraction pattern on a $S_2$ can be increased by (a) decreasing the distate (b) increasing the width | screen $S_2$ , placed behind<br>ance between the screen<br>of the slit in screen $S_2$                                                 | tum pass through a screet it. The width of the cent $S_1$ and $S_2$         | en S <sub>1</sub> containing a slit and produces a ral maximum observed on the screen             |
| Q43.              | An electron in a time ind                                                                                                          | ependent potential is in a                                                                                                             | state which is a superpos                                                   | ition of the ground state $(E_0 = 11 \text{ eV})$                                                 |
| THE<br>TH         | and the first excited star<br>(a) $3.1 \times 10^{-18}$ sec                                                                        | te (E <sub>1</sub> = 13 eV ). The way<br>(b) $2.1 \times 10^{-15}$ sec                                                                 | ve function of the electron (c) $1.2 \times 10^{-12}$ sec                   | ( ) 110 ) 110                                                                                     |
| Q44.              | A particle has the wave                                                                                                            | function $\psi(x,t) = A \operatorname{ex}$                                                                                             | $\exp(i\omega t)\cos(kx)$ . Which                                           | one of the following is correct?                                                                  |
| ASSEL             | (c) This is an eigen state                                                                                                         | e of both energy and more<br>of momentum and not<br>e of energy and not momentate of energy or mome                                    | rentum, energy. entum. ntum.                                                | (d) $1.0 \times 10^{-9}$ sec<br>none of the following is correct?                                 |
| Q45.              | constant potential $V > 0$<br>(a) $1/2$                                                                                            | where the wavelength (b) 2/3                                                                                                           | of the particle is $2\lambda$ . The (c) $3/4$                               | ith wavelength $\lambda$ enters a region of e ratio (V/E) is (d) 4/5                              |
| Q46.              | The vibrational spectru                                                                                                            | ım of a molecule exhibit                                                                                                               | ts a strong line with $P$ an                                                | $dR$ branches at a frequency $v_1$ and a                                                          |

| shows a strongly polarized line at frequency $v_3$ and no feature at $v_1$ and $v_2$ .  (a) the molecule could be linear  (b) the molecule lacks a center of inversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) $v_1$ arises from a symmetric stretching mode (d) $v_3$ arises from a bending mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| shows a strongly polarized line at frequency $v_3$ and no feature at $v_1$ and $v_2$ .  (a) the molecule could be linear  (b) the molecule lacks a center of inversion  (c) $v_1$ arises from a symmetric stretching mode  (d) $v_3$ arises from a bending mode  Q47. Three value of rotational energies of molecules are given below in different units  P $10cm^{-1}$ Q $10^{-23}J$ R $10^4 MHz$ Choose the correct arrangement in the increasing order of energy  (a) P, Q, R  (b) R, Q, P  (c) R, P, Q  (d) Q, R, P  Q48. The short wavelength cut off of the continuous <i>X</i> -ray spectrum from a nickel target is $0.0825  nm$ . The voltage                    |
| Choose the correct arrangement in the increasing order of energy  (a) P, Q, R  (b) R, Q, P  (c) R, P, Q  (d) Q, R, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q48. The short wavelength cut off of the continuous $X$ -ray spectrum from a nickel target is $0.0825  nm$ . The voltage required to the applied to an $X$ -ray tube is  (a) $0.15  KV$ (b) $1.5  KV$ (c) $15  KV$ (d) $150  KV$                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q49. The spin-orbit coupling constant for the upper state of sodium atom which emits D lines of wave numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16956.2 and 16973.4 cm <sup>-1</sup> is: (a) 15 cm <sup>-1</sup> (b) 11.4 cm <sup>-1</sup> (c) 12.5 cm <sup>-1</sup> (d) 15.1 cm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16956.2 and 16973.4 cm <sup>-1</sup> is:  (a) 15 cm <sup>-1</sup> (b) 11.4 cm <sup>-1</sup> (c) 12.5 cm <sup>-1</sup> (d) 15.1 cm <sup>-1</sup> Q50. Consider the following statements about molecular spectra  P CH <sub>4</sub> does not give pure rotational Raman lines  Q SF <sub>6</sub> could be studied by rotational Raman spectroscopy  R N <sub>2</sub> shows infrared absorption spectrum  S CH <sub>3</sub> CH <sub>3</sub> shows vibrational Raman and infrared absorption lines  T H <sub>2</sub> O <sub>2</sub> shows pure rotational spectrum  Choose the right combination of correct statements  (a) P and Q (b) P, R and T (c) P, S and T (d) Q and R |
| Q51. The temperature of a cavity of fixed volume is double. Which of the following is true for the black-body radiation inside the cavity?  (a) its energy and the number of photons both increase 8 times  (b) its energy increases 8 times and the number of photons 16 times  (c) its energy increases 16 times and the number of photons increases 8 times  (d) its energy and the number of photons both increase 16 times  Q52. A sample of ideal gas with initial pressure <i>P</i> and volume <i>V</i> is taken through an isothermal expansion proceed                                                                                                           |
| during which the change in entropy is found to be $\Delta S$ . The universal gas constant is R. Then the work done by the gas is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q53. Hydrogen molecules (mass <i>m</i> ) are in thermal equilibrium at a temperature <i>T</i> . Assuming classical distribution of velocity, the most probable speed at room temperature is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (a) $(k_BT)/m$ (b) $2k_BT/m$ (c) $(\sqrt{2k_BT}/m)$ (d) $m/(\sqrt{2}k_BT)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q54. Consider the energy $E$ in the first Brillouin zone as a function of the magnitude of the wave vector $k$ for a crystal of lattice constant $a$ . Then  (a) the slope of $E$ versus $k$ is proportional to the group velocity                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) the slope of E versus $k$ has its maximum value at $ k  = \pi / a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (c) the plot of E versus $k$ will be parabolic in the interval $(-\pi/a) < k < (\pi/a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of lattice constant $a$ . Then  (a) the slope of E versus $k$ is proportional to the group velocity  (b) the slope of E versus $k$ has its maximum value at $ k  = \pi / a$ (c) the plot of E versus $k$ will be parabolic in the interval $(-\pi/a) < k < (\pi/a)$ (d) the slope of E versus $k$ is non-zero for all $k$ the interval $(-\pi/a) < k < (\pi/a)$                                                                                                                                                                                                                                                                                                           |
| 233. FIRST FLOOR. LAXMI NAGAR DELHI-110092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

- An external magnetic field of magnitude H is applied to a Type-I superconductor at a temperature below the transition point. Then which one of the following statements is NOT true for H less than the critical field  $H_c$ ?
  - (a) the sample is diamagnetic
  - (b) it magnetization varies linearly with H
  - (c) the lines of magnetic induction are pushed out from the sample
  - (d) the sample exhibits mixed states of magnetization near  $H_c$
- A ferromagnetic material has a Curie temperaure 100K. Then
  - (a) its susceptibility is doubled when it is cooled from 300K to 200K
  - (b) all the atomic magnets in it get oriented in the same direction above 100K
  - (c) the plot of inverse susceptibility versus temperature is linear with a slope  $T_c$
  - (d) The plot of its susceptibility versus temperature is linear with an intercept  $T_C$
- The point group symmetrics of the three molecules shown in Figs, 1-3 are respectively



[notation:  $C_{2V} = 2 \text{ mm}$ ;

$$C_{2b} = 2 / m$$

$$D_{2b} = mmm$$

(a)  $C_{2h}, C_{2v}, C_{2h}$ 

- The energy density of states of an electron in a one dimensional potential well of infinitely high walls is (the symbols have their usual meaning)

(a) 
$$L\sqrt{m}/\left[\pi\hbar\sqrt{(2E)}\right]$$

(b) 
$$Lm/(\pi\hbar\sqrt{E})$$

(c) 
$$Lm/\left[\pi\hbar\sqrt{(2E)}\right]$$

(d) 
$$L\sqrt{m}/(2\pi\hbar E)$$

- Which one of the following statements concerning the Compton effect is NOT correct?
  - (a) The wavelength of the scattered photon is greater than or equal to the wavelength of the incident photon.
  - (b) The electron can acquire a kinetic energy equal to the energy of the incident photon.
  - (c) The energy of the incident photon equals to the kinetic energy of the electron plus the energy of the scattered photon.
  - (d) The kinetic energy acquired by the electron is the largest when the incident and scattered photons move in opposite directions.
- If the photon were to have a finite mass, then the Coulomb potential between two stationary charges separated by a distance r would
  - (a) be strictly zero beyond some distance
- (b) fall off exponentially for large values of r
- (c) fall off as  $1/r^3$  for large values of r
- (d) fall off as 1/r for large values of r
- A stationary particle in free space is observed to spontaneoulsy decay into two photons. This implies that
  - (a) the particle carries electric charge
  - (b) the spin of the particle must be greater than or equal to 2
  - (c) the particle is a boson
  - (d) the mass of the particle must be greater than or equal to the mass of the hydrogen atom
- The masses of hydrogen atom, neutron and  $^{238}$  U  $_{92}$  are given by 1.0078, 1.0087 and 238.0508 respectively.

The binding energy of  $^{238}U_{92}$  is therefore approximately equal to (Taking 1 a.m.u. = 931.64 MeV)

- (a) 120 *MeV*
- (b) 1500 *MeV*
- (c) 1600 MeV
- (c) 1800 MeV

threshold at the inverting terminal for which the multivibrator will switch to the other state are threshold. A bistable multivibrator with a saturation voltage  $\pm 5V$  is shown in the diagram. The positive and negative



- IF OPTIN Q64. An Avalanche effect is observed in a diode when
- (a) ±5/41V

  4. AnAve1
  (c) (a) the forward voltage is less than the breakdown voltage
  - (b) the forward voltage exceeds the breakdown voltage
  - (c) the reverse voltage exceeds the breakdown voltage
  - (d) the diode is heavily doped and forward biased
  - Q65. Which of the given relations between the Boolean variables P and Q is NOT correct? (In the notation used (d) PQ' + Q = Phere, P' denotes NOT P and O' denotes NOT O)

    - (a) PQ' + PQ = P (b) (PQ)' + P' + Q'

Data for Q. No. 66 and Q.67

- The surface integral of this vector over the surface of a cube of size a and centered at the origin (a) 0 (b)  $2\pi$ IMIST Q66.

- Q67. Which one of the following is not correct?
  - (a) Value of the line integral of this vector around any closed curve is zero
  - (b) This vector can be written as the gradient of some scalar function
  - (c) The line integral of this vector from point P to point Q is independent of the path taken
  - (d) This vector can represent the magnetic field of some current distribution

Data for Q. No. 68 to 69

Consider the motion of a particle in the potential V(x) shown in the figure.



Suppose the particle has a total energy  $E = V_1$  in the figure. Then the speed of the particle is zero when it is at

#### 233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

(a) point P (b) point Q (d) point T (c) point S Which one of the following statements is NOT correct about the particle? (a) It experience no force when its position corresponds to the point Q on the curve (b) It experience no force when its position corresponds to the point R on the curve (c) Its speed is the largest when it is at S

(d) It will be in a closed orbit between P and R if E < V

#### Data for Q. No. 70 to 71

A particle of mass m moving with speed v collides with a stationary particle of equal mass. After the collision both the particles move. Let  $\theta$  be the angle between the two velocity vectors

- If the collision is elastic, then
  - (a)  $\theta$  is always less than  $90^{\circ}$

- (b)  $\theta$  is always equal to 90°
- (c)  $\theta$  is always greater than 90°
- (d)  $\theta$  cannot be deduced from the given data
- Q71 If the collision is inelastic, then
  - (a)  $\theta$  is always less than  $90^{\circ}$

- (b)  $\theta$  is always equal to  $90^{\circ}$
- (c)  $\theta$  is always greater than 90°
- (d)  $\theta$  could assume any value in the range  $0^{\circ}$  to  $180^{\circ}$

#### Data for Q. No. 72 to 73

Consider two conducting plates of infinite extent, one plate at z = 0 and the other at z = L, both parallel to the xy plane. The vector and scalar potential in the region between the plates is given by

$$A(r,t) = A_0 \hat{i} \cos(kx + \alpha) \cos(kct);$$
  
$$\phi(r,t) = 0$$

- For this to represent a standing wave in the empty region between the plates
  - and  $\alpha = 0$

- (b)  $k = 2\pi/L$  and  $\alpha = \pi/2$
- (c)  $k = \pi/(2L)$  and  $\alpha = \pi/2$
- (d)  $k = \pi/2L$  and  $\alpha = 0$
- The energy density at z = 0 and t = 0 is:
  - (a) 0

(b)  $\varepsilon_0 c^2 k^2 A_0^2$ 

(c)  $(1/2)\mu_0 A_0^2 k^2$ 

(d)  $(1/2)\mu_0 A_0^2 k^2 + (1/2)\varepsilon_0 c^2 k^2 A$ 

A particle is located in a three dimensional cubic well of width L with impenetrabe walls.

The sum of the energies of the third and the fourth level is:

- - (a)  $10\pi^2\hbar^2 / mL^2$

(b)  $10\pi^2\hbar^2/3mL^2$ 

(c)  $11\pi^2\hbar^2/2mL^2$ 

- (d)  $15\pi^2\hbar^2 / 2mL^2$
- The degeneracy of the fourth level is given by

(b) 2

#### Data for Q. No. 76 to 77

The normalized wave function  $\psi_1$  and  $\psi_2$  correspond to the ground state and the first excited state of a particle in a potential. You are given the information that the operator  $\hat{A}$  acts on the wave functions as  $\hat{A}\psi_1=\psi_2$ and  $A\psi_2 = \psi$ 

#### 233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

|              | IST CLASS IS THOP I WIST CLASS IS THOP I WIST CLASS OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q76.         | The expectation value of A for the state $\psi = (3\psi_1 + 4\psi_2)/5$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S THE OF     | The expectation value of A for the state $\psi = (3\psi_1 + 4\psi_2)/5$ is:  (a) $-0.32$ (b) $0.0$ (c) $0.75$ (d) $0.96$ Which of the following are eigenfunctions of $\hat{A}^2$ ?  (a) $\psi_1$ and $\psi_2$ (b) $\psi_2$ and not $\psi_1$ (c) $\psi_1$ and not $\psi_2$ (d) neither $\psi_1$ nor $\psi_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9 Q77.       | Which of the following are eigenfunctions of $\hat{A}^2$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55           | (a) $\psi_1$ and $\psi_2$ (b) $\psi_2$ and not $\psi_1$ (c) $\psi_1$ and not $\psi_2$ (d) neither $\psi_1$ nor $\psi_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CLASSI       | Data for Q. No. 78 and Q.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CLASS        | In the presence of an inhomogeneous weak magnetic field, spectral lines due to transitions between two sets of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MS1 CLAS     | In the presence of an inhomogeneous weak magnetic field, spectral lines due to transitions between two sets of states were observed. $ (1)^5 l_5 \rightarrow {}^5 H_4 \text{ and } (2)^2 D_{5/2} \rightarrow {}^2 P_{3/2} $ The types of Zeeman effect observed in (1) and (2) respectively are (a) normal, normal (b) anomalous, anomalous (c) anomalous, normal (d) normal, anomalous The number of levels into which each of the above four terms split into respectively is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9717ML Q78.  | $(1)^{5}l_{5} \rightarrow {}^{5}H_{4} \text{ and } (2)^{2}D_{5/2} \rightarrow {}^{2}P_{3/2}$ The types of Zeeman effect observed in (1) and (2) respectively are (a) normal, normal (b) anomalous, anomalous (c) anomalous, normal (d) normal, anomalous The number of levels into which each of the above four terms split into respectively is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DIMIS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Q79.         | The number of levels into which each of the above four terms split into respectively is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IF OF PAPE   | The number of levels into which each of the above four terms split into respectively is: (a) 6, 4, 10, 8 (b) 4, 6, 10, 12 (c) 11, 9, 6, 4 (d) 9, 5, 12, 10  Data for O No. 80 to 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| THEOR        | (a) 6, 4, 10, 8 (b) 4, 6, 10, 12 (c) 11, 9, 6, 4 (d) 9, 5, 12, 10 <b>Data for Q.No. 80 to 82</b> A system consists of three spin-half particles, the <i>z</i> -components of whose spin $S_z(1)$ , $S_z(2)$ and $S_z(3)$ can take value +1/2 and -1/2. The total spin of the system is $S_z = S_z(1) + S_z(2) + S_z(3)$ The total number of possible micro-states of this system is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CES THE      | A system consists of three spin-half particles, the z-components of whose spin $S_z(1)$ , $S_z(2)$ and $S_z(3)$ can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ,5° 11'      | take value +1/2 and -1/2. The total spin of the system is $S_z = S_z(1) + S_z(2) + S_z(3)$<br>The total number of possible micro-states of this system is: (a) 3 (b) 6 (c) 7 (d) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.ASSV Q80.  | A system consists of three spin-half particles, the z-components of whose spin $S_z(1)$ , $S_z(2)$ and $S_z(3)$ can take value +1/2 and -1/2. The total spin of the system is $S_z = S_z(1) + S_z(2) + S_z(3)$ . The total number of possible micro-states of this system is:  (a) 3  (b) 6  (c) 7  (d) 8  The total number of micro-states with $S_z = 1/2$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q81.         | take value +1/2 and -1/2. The total spin of the system is $S_z = S_z(1) + S_z(2) + S_z(3)$<br>The total number of possible micro-states of this system is:  (a) 3  (b) 6  (c) 7  (d) 8  The total number of micro-states with $S_z = 1/2$ is:  (a) 3  (b) 5  (c) 6  (d) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q82.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSTOX        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| THE MET OF   | DESCRIPTION ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OPTIM MST    | A gas of $N$ particles is enclosed in volume $V$ at a temperature $T$ . The logarithm of the partition function is given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| THE OPTIMIST | A gas of $N$ particls is enclosed in volume $V$ at a temperature $T$ . The logarithm of the partition function is given by $\ln Z = N \ln \left\{ (V - bN)(k_B T)^{3/2} \right\}$ where $b$ is a constant with appropriate dimensions. If $P$ is the pressure of the gas, the equation of state is given by  (a) $P(V - bN) = Nk_B T$ (b) $P(V - bN) = k_B T$ (c) $P(V - b) = Nk_B T$ (d) $P(V - bN) = k_B T$ The internal energy of the gas is given by  (a) $U = (1/2)k_B T$ (b) $U = Nk_B T$ (c) $U = (3/2)Nk_B T$ (d) $U = 2Nk_B T$ Data for $Q$ . No. 85 to 86  A crystal belongs to a face centered cubic lattice with four atoms in the unit cell. The size of the crysal is $1cm$ and its unit cell dimension is $1 nm$ . $f$ is the scattering factor of the atom. The number of atoms in the crystal is  (a) $2 \times 10^{21}$ (b) $4 \times 10^{21}$ (c) $2 \times 10^{23}$ (d) $4 \times 10^{24}$ The structure factors for $(0\ 1\ 0)$ and $(2\ 0\ 0)$ reflections respectively are |
| Q83.         | If P is the pressure of the gas, the equation of state is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| as The       | (a) $P(V-bN) = Nk_BT$ (b) $P(V-bN) = k_BT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S            | (c) $P(V-b) = Nk_BT$ (d) $P(V-bN) = k_BT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q84.1        | (c) $P(V-b) = Nk_BT$ (d) $P(V-bN) = k_BT$<br>The internal energy of the gas is given by  (a) $U = (1/2)k_BT$ (b) $U = Nk_BT$ (c) $U = (3/2)Nk_BT$ (d) $U = 2Nk_BT$ Data for Q. No. 85 to 86  A crystal belongs to a face centered cubic lattice with four atoms in the unit cell. The size of the crysal is $1cm$ and its unit cell dimension is $1 nm$ . $f$ is the scattering factor of the atom.  The number of atoms in the crystal is  (a) $2 \times 10^{21}$ (b) $4 \times 10^{21}$ (c) $2 \times 10^{23}$ (d) $4 \times 10^{24}$ The structure factors for (0 1 0) and (2 0 0) reflections respectively are  (a) $2f$ and zero (b) zero and $4f$ (c) $2f$ and $2f$ (d) zero and zero                                                                                                                                                                                                                                                                                                       |
| ASSE         | (a) $U = (1/2)k_BT$ (b) $U = Nk_BT$ (c) $U = (3/2)Nk_BT$ (d) $U = 2Nk_BT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CLASSE       | Data for Q. No. 85 to 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MST CL       | and its unit cell dimension is $1  nm$ . $f$ is the scattering factor of the atom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q85.         | The number of atoms in the crystal is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dring Q85.   | (a) $2 \times 10^{21}$ (b) $4 \times 10^{21}$ (c) $2 \times 10^{23}$ (d) $4 \times 10^{24}$<br>The structure factors for (0.10) and (2.00) reflections respectively are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JPTIM Q86.   | Data for Q. No. 85 to 86 A crystal belongs to a face centered cubic lattice with four atoms in the unit cell. The size of the crysal is $1cm$ and its unit cell dimension is $1 nm. f$ is the scattering factor of the atom.  The number of atoms in the crystal is  (a) $2 \times 10^{21}$ (b) $4 \times 10^{21}$ (c) $2 \times 10^{23}$ (d) $4 \times 10^{24}$ The structure factors for $(0\ 1\ 0)$ and $(2\ 0\ 0)$ reflections respectively are (a) $2f$ and zero (b) zero and $4f$ (c) $2f$ and $2f$ (d) zero and zero  Data for Q. No. 87 to 88  An atomic bomb consisting of $^{235}U$ explodes and releases an energy of $10^{14}J$ . It is known that each $^{235}U$                                                                                                                                                                                                                                                                                                                     |
| HE OTIM      | Data for Q. No. 87 to 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| × ~ ×        | An atomic bomb consisting of 235 II explades and releases an energy of 1014 I It is known that each 235 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| THEOR        | A crystal belongs to a face centered cubic lattice with four atoms in the unit cell. The size of the crysal is $1cm$ and its unit cell dimension is $1 nm$ . $f$ is the scattering factor of the atom. The number of atoms in the crystal is  (a) $2 \times 10^{21}$ (b) $4 \times 10^{21}$ (c) $2 \times 10^{23}$ (d) $4 \times 10^{24}$ The structure factors for $(0\ 1\ 0)$ and $(2\ 0\ 0)$ reflections respectively are (a) $2f$ and zero (b) zero and $4f$ (c) $2f$ and $2f$ (d) zero and zero  Data for Q. No. 87 to 88  An atomic bomb consisting of $^{235}U$ explodes and releases an energy of $10^{14}$ $J$ . It is known that each $^{235}U$ which undergoes fission releases 3 neutrons and about $200 \ MeV$ of energy. Further, only $20\%$ of the $^{235}U$                                                                                                                                                                                                                      |

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092 CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

THE OPTIMIST CLASSES

THE OPTIMIST CLAS

THE OPPIMIST CY

atoms in the bomb undergoes fission:

The total number of neutrons released is about

(a)  $4.7 \times 10^{24}$ 

- (d) 3.7×10<sup>25</sup> mis THE OPTIMIST CLASSES THE OPTIMIST CLASSES

Q88. The mass of  $^{235}U$  in the bomb is about

(a) 1.5 kg

THE OPTIMI

Data for Q. No. 89 to 90

The circuit below represents a non-inverting integrator



(a) 
$$V_0 = (1/RC) \int V_1 dt$$

- (b) The voltages at the inverting and non-inverting terminals of the op-amp are nearly

  (c) The voltage at the non-inverting terminal of the op-amp and the current in the resistor attached to it are HE OPTIMIST CI

| PIIMIS IST        | LAV SEES THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THE OPTIM                       | √ <del>-</del>                                | +            | THE OF                                 | THE OPTIMES                                          | CLASS SS                        | S THE                    | 0P ,       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|--------------|----------------------------------------|------------------------------------------------------|---------------------------------|--------------------------|------------|
| OPTIMIL           | For high frequencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THE OF                          | TIME R                                        | C CASSE      | THE                                    | O. BIIMIS                                            | ALOPTIMIST CLASS                | 45                       | THE OP'S   |
| IE OPTIMI         | STOLA SSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THE                             | PTIMIS                                        | × 0'         | SES                                    | THE OF THE                                           | MS CL                           | SES                      | TE.        |
| Q89.              | For high frequencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - (c) \ co                      | ) the input in                                | npedance i   | $\int (1+\omega R)$                    | THEOR                                                | L. J. L.                        | CLASE SE                 | 5          |
| THEOL             | (a) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) R                           | THE OP OF                                     | TIMIS (c) R  | $1/(1+\omega RC)$                      | 71 AAY                                               | S TIMIS'                        | CLASS                    | 125        |
| SES - SUE         | OF TIME!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASS OFS.                        | THE OP                                        | MSI          | CLASS                                  | TIP OF                                               | EOPI                            | MST CLA                  | 22°        |
| Q90.              | Q89. For high frequencies $(\omega \to \infty)$ the input impedance is  (a) 0 (b) $R$ (c) $R/(1+\omega RC)$ (d) $\infty$ Q90. For low frequencies $(\omega \to \infty)$ the input impedance is  (a) $V_0 = (1/RC) \int V_1 dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                               |              |                                        |                                                      |                                 |                          |            |
| LASSI             | of the state of th |                                 |                                               |              |                                        |                                                      |                                 |                          |            |
| ASSI              | Salm (Option)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MST C.                          | ASSIL                                         | THE OP       | Tilly                                  | CLASTS                                               | THE                             | OPTIME                   | IST CL     |
| STOP ASSI         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16,7                            | × 5"                                          | <b>*</b>     |                                        | C                                                    | nearry                          | ill of the               | 1          |
| STOL              | (c) The voltage at t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <) >                            | verting termi                                 | nal of the o | p-amp and                              | the current in                                       | n the résista                   | or attached to           | o it are   |
| TIME CT CL        | $\pi/2$ out of phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | CLA                                           | CSES         | THEOL                                  | PIMISTO                                              | LAS                             | , THE OF                 |            |
| TIMIS.            | (d) The current in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he two resi                     | istors are in p                               | hase         | THE                                    | F TIMES I                                            | CLASS                           | 755 N                    | EORI       |
| 301               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , (1)                           | A                                             | NSWER        | KEY                                    |                                                      | ( )                             |                          |            |
| THE OP !          | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.                              | (d)<br>(c)<br>(b)<br>(c)<br>(b)               | 3. 15        | (a)                                    | THE 9.                                               | (d)                             | ASS 5.                   | (a)        |
| THE THE OPTION    | 6 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75HE                            | (c)                                           | 13           | <b>(b)</b>                             | 9.                                                   | (d)<br>(d)<br>(a)<br>(b)        | 10,5                     |            |
| THE               | 0. (c)<br>11. (a)<br>16. (b)<br>21. (c)<br>26. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.                             | (c)                                           | 18           | (c)<br>(a)                             | 19.                                                  | (a)                             | 20.                      | (c)<br>(b) |
| ES THE            | 21. (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.                             | (b)<br>(b)<br>(b)                             | 23.          | (d)                                    | 24. W                                                | (a)<br>(b)<br>(a)<br>(c)        | 25.                      | (a)        |
| CES A             | 26. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.                             | (b)                                           | 28.11        | (d)                                    | 29.                                                  | (a)<br>(c)<br>(b)<br>(c)<br>(b) | MIS 30.                  | (a)        |
| ASS               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                               |                                               |              | (d)<br>(b)<br>(c)<br>(b)               | SS 34.                                               | (b)                             |                          | (c) c      |
| SSE               | 36. (c)<br>41. (a)<br>46. (a)<br>51. (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.                             | (d)                                           | 38.          | (c)                                    | 39.5<br>44.                                          | (c)                             | 40.<br>45.<br>50.        | (c)        |
| CLA SE            | 41. (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.                             | (c)<br>(b)                                    | 43.          | (p)                                    | 44.                                                  | (b)                             | 45.                      | (c)        |
| CLASS             | 46. (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.                             | (b) ·                                         | 48.          | 0)(0)                                  | 5, 1,5,                                              | (D)                             | 20.                      | (c)        |
| ist of            | 551. (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.                             | (a) SSF                                       | 53.1         | (c) 1111                               | 54.                                                  | (a)                             | THE 55.                  | (d)        |
| Mr. CLr.          | 56. (a)<br>61. (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/                              | (d)                                           | 58.<br>63.   | (a)                                    | (IMI) 59.                                            | (c) (E)                         | 60.<br>65.               | (q)<br>(n) |
| MISI              | 61. (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.                             | $M_{(q)}$                                     | 68           | (a) (b)                                | 69.                                                  | (0)                             | ~ 70. «                  | (h)        |
| MIST CLASS        | 66. (d)<br>71. (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.<br>57.<br>62.<br>67.<br>72. | (a)<br>(c)<br>(d)<br>(d)<br>(b)               | 68.<br>73.   | (c)<br>(a)<br>(a)<br>(a)<br>(a)<br>(b) | 0PT 74.5                                             | (a) S                           | 75.                      | (c)-{(     |
| PLIM              | 76. (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7HE 77.                         | (a)                                           | 78.S         | (a)<br>(b)                             | 79.                                                  | (c)                             | 60,<br>65.<br>70.<br>75. | (d)        |
| JE TIME OF TIMES! | 71. (a)<br>76. (c)<br>81 (a)<br>86. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>82.</b> O                    | (a)<br>(c)<br>(d)<br>(d)<br>(b)<br>(a)<br>(b) | 83.<br>88.   | (a)                                    | 54.<br>59.<br>64.<br>69.<br>74.<br>79.<br>84.<br>89. | (c)<br>(a)<br>(c)<br>(c)<br>(b) | 80.<br>85.               | (h)        |
| 0,1               | 86. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                              | as                                            | 00           | S(c)                                   | (1) 600()                                            | (h) (1)                         | 90.                      | (a)        |