E OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

SOUMIL GIRISH SAHU

BHOOMIJA

SHIKHAR CHAMOL

GAURAV JHA

SWAPNIL JOSHI

LOKESH BHATT

VAIBHAV

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

CSIR-NET-JRF RESULTS

DL01000308

ALANKAR

SAHIL RANA

JAYESTHI RJ11000161

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

SURYA PRATAP SINGH RJ06000232

CHANDAN RJ09000159

SAIKHOM JOHNSON

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

JYOTSNA KOHLI UK02000262

SHYAM SUNDAR RIDGOOD

THE OPTIMIST CLASSES

AN INSTITUTE FOR NET-JRF/GATE/IIT-JAM/JEST/TIFR/M.Sc ENTRANCE EXAMS

CONTACT: 9871044043

GATE PAPER 2005

CLAS.	SSES THE	OF PIMIS! CLASA	SSES THE OF	imist ciclass ssis it	E OP L DIIM		
NST CI	Q. 130 : Ca	rry ONE mark each.	ASSES THE	OPTIMIT STOLIN SSES	THE		
01.45	The average va	alue of the function $f(x)$:	$=4x^3$ in the interval 1	to 3 is Tibility of Clark SEES	THE		
PIIMI	(a) 15 SS	(b) 20 Prints	(c) 40 15	(d) 80 ST CLAR	SES TH		
Q2.	Q. 130 : Carry ONE mark each. The average value of the function $f(x) = 4x^3$ in the interval 1 to 3 is (a) 15 (b) 20 (c) 40 (d) 80 The unit normal to the curve $x^3y^2 + xy = 17$ at the point (2, 0) is (a) $\frac{(\hat{i} + \hat{j})}{\sqrt{2}}$ (b) $-\hat{i}$ (c) $-\hat{j}$ (d) \hat{j} The value of the integral $\int_{c} \frac{dz}{z+3}$ where C is a circle (anticlockwise) with $ z = 4$, is:						
THE	(a) $\frac{(\hat{i}+\hat{j})}{\sqrt{2}}$	CLASSED (b) S-i THE OF	EOPTICO - ÎT CLASE	the THILL OPTIME UST O	TOLASSES		
Q3.	The value of th	he integral $\int_{c} \frac{dz}{z+3}$ where C	is a circle (anticlockw	vise) with $ z = 4$, is:	MIST CLASS		
LASSI	(a) 0	(b) πi	(c) $2\pi i$	(d) $4\pi i$	OPTI		
Q4.	The determina	ant of a 3×3 real symmetr	ric matrix is 36. If two	of its eigenvalues are 2 and 3 th	en the third		
Q5.	For a particle n	noving in a central field	CLASSIC	TOPING MISTER ASSI	S This		
	eigenvalue is: (a) 4 (b) 6 (c) 8 (d) 9 For a particle moving in a central field (a) the kinetic energy is a constant of motion (b) the potential energy is velocity dependent (c) the motion is confined in a plane (d) the total energy is not conserved						
OPTIL	(c) the motion is confined in a plane (d) the total energy is not conserved						
Q6.	A bead of mass m slides along a straight frictionless rigid wire rotating in a horizontal plane with angular speed ω . The axis of rotation is perpendicular to the wire and passes through one end of r is the distance of the mass from the axis of rotation and v is its speed then the magnitude of the Co						
TH	I is OPTIMITE	STOLL SSES THE	OF TIME OF CLA	SSES THE DEIMIN	CLA		
ES AS	(a) $\frac{mv^2}{r}$	(b) $\frac{2mv^2}{r}$	(c) mvo	(d) $2mv\omega$ (a) m_N with position vectors $\vec{r_1}, \vec{r_2}$.	MST CL		
Q7.	If for a system	of N particle of differen	t masses m_1, m_2, \ldots, n_n	\vec{n}_N with position vectors \vec{r}_1, \vec{r}_2 .	, \vec{r}_N and		
CLAS	If for a system of N particle of different masses $m_1, m_2,, m_N$ with position vectors $\vec{r}_1, \vec{r}_2,, \vec{r}_N$ and corresponding velocities $\vec{v}_1, \vec{v}_2,, \vec{v}_N$, respectively, such that $\sum \vec{v}_i = 0$, then (a) the total momentum MUST be zero						
,,	(a) the total momentum MUST be zero						
ISTC	(b) the total momentum MUST be independent of the choice of the origin						
Wir	(c) the total force on the system MUST be zero						
TIMI		rque on the system MUST		THEOR TIMES! CLASE	AFS A		
Q 8.		s-energy equivalence of speciess cannot occur in free	1 1	onversion of a photon to an electr	on-positroi		

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

(a) the mass is not conserved

- (b) the energy is not conserved
- (c) the momentum is not conserved
- (d) the charge is not conserved
- Three infinitely long wires are placed equally apart on the circumference of a circle of radius a, perpendicular to its plane. Two of the wires carry current I each, in the same direction, while the third carries current 2I along the direction opposite to the other two. The magnitude of the magnetic induction \vec{B} at a distance r from the centre of the circle, for r > a, is
 - (a) 0
- (c) $-\frac{2\mu_0}{\pi}\frac{I}{r}$ (d) $\frac{2\mu_0}{\pi}\frac{Ia}{r^2}$
- A solid sphere of radius R carries a uniform volume charge denisty ho . The magnitude of electric field inside the sphere at a distance r from the centre is:
- $\frac{R^2\rho}{r\varepsilon_0}$
- $\frac{R^3\rho}{r^2\varepsilon_0}$
- The electric field $\vec{E}(\vec{r},t)$ for a circularly polarized electromagnetic wave propagating along the positive z-
 - (a) $E_0(\hat{x} + \hat{y}) \exp[i(kz \omega t)]$
- (b) $E_0(\hat{x} + i\hat{y}) \exp[i(kz \omega t)]$
- (d) $E_0(\hat{x} + \hat{y}) \exp[i(kz + \omega t)]$
- (c) $E_0(\hat{x} + i\hat{y}) \exp[i(kz + \omega t)]$ The electric (E)The electric (E) and magnetic (B) field amplitudes associated with an electromagnetic radiation from a point source behave at a distance r from the source as
 - (a) E =constant, B =constant
- (b) $E \propto \frac{1}{r}$, $B \propto \frac{1}{r}$
- (c) $E \propto \frac{1}{r^2}$, $B \propto \frac{1}{r^2}$

- (d) $E \propto \frac{1}{r^3}, B \propto$
- 13. The parities of the wave functions

- (d) (i) even, (ii) odd
- (i) $\cos(kr)$, and (ii) $and \tan h(kx)$ are (a) (i) odd, (ii) odd (b) (i) even, (ii) even (c) (i) odd, (ii) even Q14. The commutator, $L_z, Y_{lm}(\theta, \phi)$ where L_z is the z-component of the orbital angular momentum and $Y_{lm}(\theta, \phi)$ is a spherical harmonic, is:
 - (a) $l(l+1)\hbar Y_{lm}(\theta,\phi)$ (b) $-m\hbar Y_{lm}(\theta,\phi)$ (c) $m\hbar Y_{lm}(\theta,\phi)$ (d) $+l\hbar Y_{lm}(\theta,\phi)$

- A system in a normalized state $|\psi\rangle = c_1 |\alpha_1\rangle + c_2 |\alpha_2\rangle$, with $|\alpha_1\rangle$ and $|\alpha_2\rangle$ representing two different eigenstates of the system, requires that the constants c_1 and c_2 must satisfy the condition
- (c) $(|c_1| + |c_2|)^2 = 1$ (d) $|c_1|^2 + |c_2|^2 = 1$
- A one-dimensional harmonic oscillator carrying a charge q is placed in a uniform electric field \vec{E} along positive x-axis. The corresponding Hamiltonian operator is
 - (a) $\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}kx^2 + qEx$
- (b) $\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}kx^2 \frac{1}{2}kx^2$
- (c) $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}kx^2 + qEx$
- (d) $\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}kx^2 qEx$

The L_n line of X-rays emitted from an atom with principal quantum numbers n = 1,2,3,...transition

(a)
$$n = 4 \to n = 2$$

(b)
$$n=3 \rightarrow n=2$$

(c)
$$n=5 \rightarrow n=2$$

(d)
$$n = 3 \rightarrow n = 1$$

Q18. For an electron in hydrogen atom, the states are characterized by the usual quantum numbers n, l, m_j . The electric dipole transition between any two states requires that

(a)
$$\Delta \ell = 0, \Delta m_{\ell} = 0, \pm 1$$

(b)
$$\Delta \ell = \pm 1, \Delta m_{\ell} = \pm 1, \pm 2$$

(c)
$$\Delta \ell = \pm 1, \Delta m_{\ell} = 0, \pm 1$$

(d)
$$\Delta \ell = \pm 1, \Delta m_{\ell} = 0, \pm 2$$

U, then the equation for an adiabatic process If the equation of state for a gas with internal energy U is pV =

(a)
$$pV^{1/3} = \text{constant}$$

(b)
$$pV^{2/3} = \text{constant}$$

(c)
$$pV^{4/3} = \text{constant}$$

(d)
$$pV^{3/5} = \text{constant}$$

The total number of accessible states of N non intracing particles of spin 1/2 is

(a)
$$2^{\Lambda}$$

(c)
$$2^{N/2}$$

The pressure for a non-interacting Fermi gas with internal energy U at temperature T is:

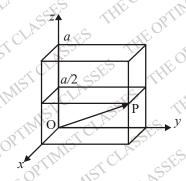
(a)
$$P = \frac{3U}{2V}$$

(b)
$$P = \frac{2}{3} \frac{U}{V}$$

(c)
$$P = \frac{3U}{5V}$$
 (d) $P = \frac{1U}{2V}$

(d)
$$P = \frac{1}{2} \frac{U}{V}$$

A system of non-interacting Fermi particles with Fermi energy E_F has the density of states propor tional to \sqrt{E} , where E is the energy of a particle. The average energy per particle at temperture T=0 is


(a)
$$\frac{1}{6}E_{1}$$

(b)
$$\frac{1}{5}E_F$$

(c)
$$\frac{2}{5}E$$

(d)
$$\frac{3}{5}E$$

In crystallographic notations the vector \overline{OP} in the cubic cell shown in the figure is

- (c) [121]

(d) [112] OP TIMI

Match the following and choose the correct combination

- P. Atomic configuration 1s²2s²2p⁶3s²3p⁶

Q. Strongly electropositive

2. Si

- R. Strongly electronegative
- 3. Ar

S. Convalent bonding

(a) P-1, Q-2, R-3, S-4

(b) P-3, Q-2, R-4, S-1

(c) P-3, Q-1, R-4, S-2

(d) P-3, Q-4, R-1, S-2

The evidence for the non-conservation of parity in β -decay has been obtained from the observation that the β intensity

- (a) antiparallel to the nuclear spin directions is same as that along the nuclear spin direction
- (b) antiparallel to the nuclear spin directions is not the same as that along the nuclear spin direction

- J.?
 THE OPTIMIST CLASSES
 THE OPTIMIST CLASSES

(c) shows a continous distributions as a function of momentum (d) is independent of the nuclear spin direction

Q26. Which of the following expressions for total binding energy
$$B$$
 of a nucleus is correct $(a_1, a_2, a_3, a_4 > 0)$?

(a) $B = a_1 A - a_2 A^{2/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$

(b) $B = a_1 A + a_2 A^{1/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$

(c) $B = a_1 A + a_2 A^{1/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$

(d) $B = a_1 A - a_2 A^{1/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$

Q27. Which of the following decay is forbidden?

(a) $\mu^- \rightarrow e^+ + \nu_\mu + \overline{\nu}_e$

(b) $\pi^+ \rightarrow \mu^+ + \nu_\mu$

(b)
$$B = a_1 A + a_2 A^{2/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$$

(c)
$$B = a_1 A + a_2 A^{1/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$$

(c)
$$B = a_1 A + a_2 A^{1/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$$

(d) $B = a_1 A - a_2 A^{1/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} - a_4 \frac{(A-2Z)^2}{A} + \delta$

Which of the following decay is forbidden?

(a) $\mu^- \to e^- + \nu_\mu + \overline{\nu}_e$ (b) $\pi^+ \to \mu^+ + \nu_\mu$

(c) $\pi^+ \to e^+ + \nu_e$ (d) $\mu^- \to e^+ + e^- + e^-$

With reference to nuclear forces which of the following statements is NOT true? The nuclear forces are

(a) short range (b) charge independent

(c) velocity dependent (d) spin independent

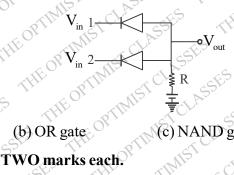
A junction field effect transistor behaves as a

(a) Voltage controlled current source (c) Current controlled voltage source

(a)
$$\mu^- \rightarrow e^- + \nu_\mu + \overline{\nu}_e$$

(b)
$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

(c)
$$\pi^+ \rightarrow e^+ + v_e$$


(d)
$$\mu \rightarrow e^+ + e^- + e^-$$

- (b) $\pi^+ \rightarrow \mu^+ + \nu_\mu$ (d) $\mu^+ \rightarrow e^+ + e^- +$ following stater

- Q29. A junction field effect transistor behaves as a

 - (c) Current controlled voltage source

- The circuit shown can be used as

- ate (d) (d) AND gate OF IN 181 CLASSES

(a) NOR gate 0.31

- (b) OR gate (c) NAND gate Q.31 Q.80 : Carry TWO marks each.

- (d) 3k⁵

- 4. At a vector field $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, then $\vec{\nabla} \times (\vec{\nabla} \times \vec{F})$ is

 (a) 0

 (b) \hat{i} (c) $2\hat{j}$ (d) $3\hat{k}$ Q32. All solutions of the equation $e^z = -3$ are

 (a) $z = in \pi \ln 3, n = \pm 1, \pm 2, \dots$ (b) $z = \ln 3 + i(2n + 1)\pi, n = 0, \pm 1, \pm 2, \dots$ (c) $z = \ln 3 + i2n\pi, n = 0, \pm 1, \pm 2, \dots$ (d) $z = i3n\pi, n = \pm 1, \pm 2, \dots$ Q33. If $\vec{f}(s)$ is the laplace transform of f(t) the Laplace (b) $z = \ln 3 + i(2n+1)\pi$, $n = 0, \pm 1, \pm 2, \dots$ (d) $z = i3n\pi$, $n = \pm 1, \pm 2, \dots$ If $\overline{f}(s)$ is the laplace transform of f(t) the Laplace transform of f(at), where a is a constant, is

 (a) $\frac{1}{a}\overline{f}(s)$ (b) $\frac{1}{a}\overline{f}(s/a)$ (c) $\overline{f}(s)$

Q34. Given the four vectors,
$$u_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 4 \\ -8 \end{pmatrix}$, $u_4 = \begin{pmatrix} 3 \\ 6 \\ -12 \end{pmatrix}$, the linearly independent pair is

(a) u_1, u_2 (b) u_1, u_3 (c) u_1, u_4 (d) u_3, u_4

- Consider the following function: $f(z) = \frac{\sin z}{z}$. Which of the following statements is are TRUE?
 - (a) z = 0 is pole of order 1

(b) z = 0 is a removable singular point

(c) z = 0 is a pole order 3

(d) z = 0 is an essential singular point

Eigenvalues of the matrix

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2i \\
0 & 0 & 2i & 0
\end{pmatrix}$$
are
$$(b) - 1, 1, 0, 2 \qquad (c) 1, 0$$
es outward in a plane along a curved trainits

- (c) 1, 0, 2, 3
- If a particle moves outward in a plane along a curved trajectory described by $r = a\theta$, $\theta = \omega t$, where a and
 - (a) kinetic energy is conserved
- (b) angular momentum is conserved
- (c) total momentum is conserved
- (d) radial momentum is conserved
- A circular hoop of mass M and radius a rolls without slipping with constant angular speed ω along the horizontal x -axis in the xy-plane. When the centre of the hoop is at a distance $d = \sqrt{2}a$ from the origin, the magnitude of the total angular momentum of the hoop about the origin is
 - (a) $Ma^2\omega$

- (d) $3Ma^2\omega$
- Two solid spheres of radius R and mass M each are connected by a thin rigid rod of negligible mass. The distance between the centres is 4R. The moment of inertia about an axis passing through the centre of symmetry and perpendicular to the line joining the spheres is

- A car is moving with constant linear acceleration a along horizontal x-axis. A solid sphere of mass M and radius R is found rolling without slipping on the horizontal floor of the car in the same direction as seen from an inerital frame outside the car. The acceleration of the sphere in the inerital frame is
 - (a) a / 7
- (c) 3a 17
- (d) 5a/
- A rod of length l_0 makes an angle θ_0 with the y-axis in its rest frame, while the rest frame moves to the right

along the x-axis with relativistic speed v with respect to the lab frame. If $\gamma =$

lab frame is

(a) $\theta = \tan^{-1}(\gamma \tan \theta_0)$

- (c) $\theta = \tan^{-1} \left(\frac{1}{\gamma} \tan \theta_0 \right)$
- $\theta = \tan^{-1} \left(\gamma \cot \theta_0 \right)$

A particle of mass m moves in a potential $V(x) = \frac{1}{2}m\omega^2x^2 + \frac{1}{2}m\mu v^2$, where x is the position coordinates, v is the speed, and ω and μ are constants. The canonical (conjugate) momentum of the particle is (d) $p = m(1 - \mu)v$ (b) p = mv(a) $p = m(1 + \mu)v$ (c) $p = m\mu v$ Consider the following three independent cases: (i) Particle A of charge +q moves in free space with a constant velocity \overline{v} ($v \ll$ speed of light) (ii) Particle B of charge +q moves in free space in a circle of radius R with same speed v as in case (i)

(iii) Particle C having charge-q moves as in case (ii)

If the powers radiated by A, B and C are P_A , P_B and P_C respectively, then:

(a)
$$P_A = 0, P_B > P_C$$
 (b) $P_A = 0, P_B = P_C$ (c) $P_A > P_B > P_C$

(b)
$$P_A = 0, P_B = P_C$$

(c)
$$P_A > P_B > P_C$$

(d)
$$P_A = P_B = P_C$$

If the electrostatic potential were given by $\phi = \phi_0 (x^2 + y^2 + z^2)$, Where ϕ_0 is constant, then the charge den sity giving rise to the above potential would be:

(b)
$$-6\phi_0\varepsilon_0$$

$$(c)-2\phi_0\varepsilon_0$$

$$(d) - \frac{6\phi_0}{\varepsilon_0}$$

Q45. The work done in bringing a charge +q from infinity in free space, to a position at a distance d in front of a sem infinite grounded metal surface is:

(a)
$$-\frac{q^2}{4\pi\varepsilon_0(d)}$$

(b) =
$$\frac{q^2}{4\pi\varepsilon_0(2d)}$$

(c)
$$-\frac{q^2}{4\pi\varepsilon_0(4d)}$$

(a)
$$-\frac{q^2}{4\pi\varepsilon_0(d)}$$
 (b) $=\frac{q^2}{4\pi\varepsilon_0(2d)}$ (c) $-\frac{q^2}{4\pi\varepsilon_0(4d)}$ (d) $-\frac{q^2}{4\pi\varepsilon_0(6d)}$

A plane electromagnetic wave travelling in vaccum is incident normally on a non magnetic, non-absorbing medium of refractive index n. The incident (E_i) , reflected (E_i) and transmitted (E_i) electric fields are given as, $E_i = E \exp[i(kz - \omega t)], E_r = E_{0r} \exp[i(k_r z - \omega t)], E_t = E_{0t} \exp[i(k_r z - \omega t)].$ If E = 2 V/m and n

(a)
$$E_{0r} = -\frac{3}{5}V/m$$
, $E_{0t} = \frac{7}{5}V/m$

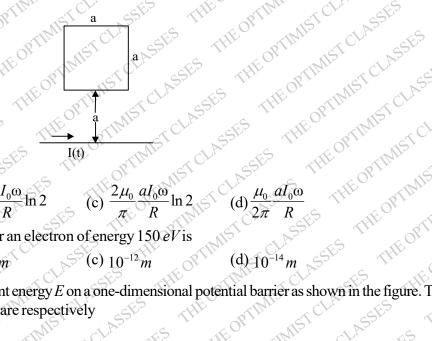
(b)
$$E_{0r} = -\frac{1}{5}V/m$$
, $E_{0t} = \frac{8}{5}V/m$

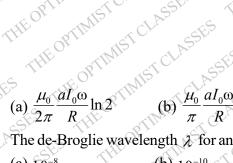
(c)
$$E_{0r} = -\frac{2}{5}V/m$$
, $E_{0t} = \frac{8}{5}V/m$

(d)
$$E_{0r} = \frac{4}{5} V/m$$
, $E_{0t} = \frac{6}{5} V/m$

(c) $E_{0r} = -\frac{2}{5}V/m$, $E_{0t} = \frac{8}{5}V/m$ (d) $E_{0r} = -\frac{1}{5}V/m$, $E_{0t} = \frac{8}{5}V/m$ For a vector potential \vec{A} , the divergence of \vec{A} is $\vec{\nabla} \cdot \vec{A} = -\frac{\mu_0}{4\pi} \frac{Q}{r^2}$ where Q is a constant of appropriate

dimension. The corresponding scalar potential $\varphi(\vec{r},t)$ that makes \vec{A} and φ Lorentz gauge invariant is


(a)
$$\frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$


(b)
$$\frac{1}{4\pi\varepsilon_0} \frac{Qt}{r}$$

$$(c) \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

(b)
$$\frac{1}{4\pi\varepsilon_0} \frac{Q t}{r}$$
 (c) $\frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$ (d) $\frac{1}{4\pi\varepsilon_0} \frac{Q t}{r^2}$

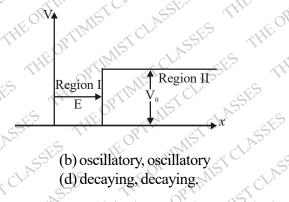
Q48. An infinitely long wire carrying a current $I(t) = I_0 \cos(wt)$ is placed at a distance a from a square loop of side a as shown in the figure. If the resistance of the loop is R, then the amplitude of the induced current in the loop

(b)
$$\frac{\mu_0}{\pi} \frac{aI_0\omega}{R} \ln 2$$

(c)
$$\frac{2\mu_0}{\pi} \frac{aI_0\omega}{R} \ln 2$$

$$(d)\frac{\mu_0}{2\pi}\frac{aI_0\omega}{R}$$

Q49. The de-Broglie wavelength λ for an electron of energy 150 eV is


(a)
$$10^{-8} m$$

(b)
$$10^{-10} m$$

(c)
$$10^{-12} m$$

(d)
$$10^{-14} m$$

Q50. A particle is incident with a constant energy E on a one-dimensional potential barrier as shown in the figure. The wave functions in regions I and II are respectively

- (a) decaying, oscillatory
- (c) oscillatory, decaying

The expectation value of the z-coordinates, (z) in the ground state of the hydrogen atom (wavefunction: , where A is the normalization constant and a_0 is the Bohr radius), is

(a)
$$a_0$$

(b)
$$\frac{a_0}{2}$$

(c)
$$\frac{a_0}{4}$$

The degeneracy of the n = 2 level for a three dimensional isotropic oscillator is

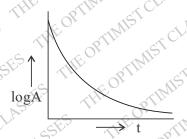
(b) 6

Q53. For a spin -1/2 particle, the expectation value of S_x , S_y , S_z where S_x , S_y and S_z are spin operators,

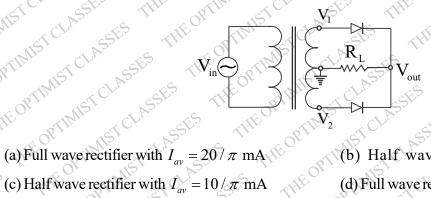
- (a) $\frac{i\hbar^3}{}$

An atom emits a photon of wavelength $\lambda = 600 \, nm$ by transition from an excited state of lifetime 8×10^{-9} s . If Δv represents the minimum uncertainty in the frequency of the photon, the fractional width $\Delta v/v$ of the spectral line is of the order of

- (b) 10⁻⁶

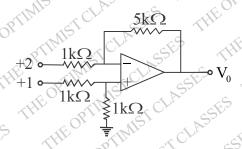

Q55. The sodium doublet lines are due to transitions from ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ levels to ${}^{2}S_{1/2}$ level. On application of a weak magnetic field, the total number of allowed transitions becomes

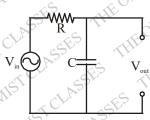
Q56.	A three level system of atoms has N_1	atoms in level E_1 , N_2 in level E_2 , and N_3 in level
THE	E_3 (N_2 $>$ N_1 $>$ N_3 and E_1 $<$ E_2 $<$ E_3) . Laser	emission is possible between the levels
à THEO	(a) $E_3 \rightarrow E_1$ (b) $E_2 \rightarrow E_1$	emission is possible between the levels (c) $E_3 \rightarrow E_2$ (d) $E_2 \rightarrow E_3$ quency v from a laser is scattered by diatomic molecules having
Q57. Q58. Q58.	moment of inertia I . The typical Raman shifted (a) v and I (b) only v	quality / Hollie laser is source of alaterine merecules having
ASSET		otational level spacing $\Delta E_{j} = E_{j} - E_{j-1}$ are approximately
MST CLASS	Str. Still of the - it Clive settle	THE TIME COLUMN
OURTO	(a) $\Delta E_n = \text{constant}, \ \Delta E_J = \text{constant}$ (c) $\Delta E_n \propto n, \Delta E_J \propto J$	(d) $\Delta E_n \propto n, \Delta E_J \propto J^2$
IE OPTIMIES.	The typical wavelength emitted by diatomic more respectively in the region of (a) infrared and visible (c) infrared and microwave	(b) visible and infrared (d) microwave and infrared
Q60.	In a two electron atomic system having orbita	al and spin angular momenta ℓ_1, ℓ_2 and $s_1 s_2$ respectively, the
THE THE	coupling strengths are defined as $\Gamma_{\ell_1\ell_2}$, $\Gamma_{s_1s_2}$, applicable, the coupling strengtts MUST satisf	$\Gamma_{\ell_1 s_1}, \Gamma_{\ell_2 s_2}, \Gamma_{\ell_1 s_2}$ and $\Gamma_{\ell_2 s_k}$. For the J-J coupling scheme to be sy the condition.
P 11	(a) $\Gamma_{\ell_1\ell_2}, \Gamma_{s_1s_2} > \Gamma_{\ell_1s_1}, \Gamma_{\ell_2s_2}$	(b) $\Gamma_{\ell_1 s_1}, \Gamma_{\ell_2 s_2} > \Gamma_{\ell_1 \ell_2}, \Gamma_{s_1 s_2}$
LASSI	(c) $\Gamma_{\ell_1 s_2}$, $\Gamma_{\ell_2 s_1} \gg \Gamma_{\ell_1 \ell_2}$, $\Gamma_{s_1 s_2}$	(d) Γ_{ℓ_1,s_2} , $\Gamma_{\ell_2,s_1} > \Gamma_{\ell_1,s_2}$, Γ_{ℓ_2,s_2}
Q61.	If the probability that x lies between x and x	$x + dx$ is $p(x) dx = ae^{-ax} dx$, where $0 < x < \infty$, $a > 0$, then the
37 755	probability that x lies between x_1 and x_2 ($x_2 > 1$)	
IMIST CL	(a) $(e^{-ax_1} - e^{-ax_2})$ (b) $a(e^{-ax_1} - e^{-ax_2})$	$(c) e^{-ax_2} (e^{-ax_1} - e^{-ax_2}) (d) e^{-ax_1} (e^{-ax_1} - e^{-ax_2})$
Q62.	If the partition function of a harmonic oscillat	or with frequency ω at a temperature T is $\frac{kT}{k\omega}$, then the free
, Or MIN		
THE OPT	the partition function of two Bose particles ea	(c) NkT In $\frac{\hbar\omega}{kT}$ (d) NkT In $\frac{\hbar\omega}{2kT}$ ch of which can occupy any of the two energy levels 0 and ε is:
Q63.	The partition function of two Bose particles ea	ch of which can occupy any of the two energy levels 0 and ε is:
ASSES Q64.	(a) $1 + e^{-2kT} + 2e^{-kT}$ (b) $1 + e^{-2kT} + e^{-kT}$	(c) $2 + e^{-2\varepsilon_{kT}} + e^{-\varepsilon_{kT}}$ (d) $e^{-2\varepsilon_{kT}} + e^{-\varepsilon_{kT}}$ to left or right with equal probability. The probability that the origin after N even number of step is:
MSTCLASSE	(a) $\frac{N!}{\left(\frac{N}{2}\right)!\left(\frac{N}{2}\right)!}\left(\frac{1}{2}\right)^{N}$ (b) $\frac{N!}{\left(\frac{N}{2}\right)!\left(\frac{N}{2}\right)!}$	origin after N even number of step is: (c) $2N! \left(\frac{1}{2}\right)^{2N}$ (d) $N! \left(\frac{1}{2}\right)^{N}$ If free particles in a three dimensional space having total energy onal to
Q65.	The number of states for a system of N identical	l free particles in a three dimensional space having total energy
JETH WIST	between E and E+ δ E(δ E \ll E), is proporti	onal to
HE OPTIM	(a) $\left(E^{\frac{3N}{2}}\right)\delta E$ (b) $E^{N/2}\delta E$	onal to $ (c) NE^{1/2} \delta E $


Q66. The energy of a ferromagnet as a function of magnetization M is given by

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

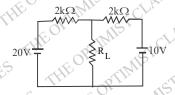
	EOr	$(I_1 \cup I_1) = I_0 + 2(I_1 - I_1) + I_1 \cup I_1 = I_1 \cup I_1 \cup I_1 \cup I_2 \cup$					
3	OP!	The number of minima in the function $F(M)$ for $T > T_C$ is (a) 0 (b) 1 (c) 3 (d) 4 For a closed packed BCC structure of hard spheres, the lattice constant α is related to the sphere radius R as					
,5	Q67.	(a) 0 (b) 1 (c) 3 (d) 4 For a closed packed BCC structure of hard spheres, the lattice constant <i>a</i> is related to the sphere radius <i>R</i> as					
SSE	Qu	To a diesect packet Bee structure explaines, the lattice constant it is related to the sphere ratings it as					
CLAS	SEP IS	(a) $a = \frac{4R}{\sqrt{3}}$ (b) $a = 4R\sqrt{3}$ (c) $a = 4R\sqrt{2}$					
	Q68.	An <i>n</i> -type semiconductor has an electron concentration of 3×10^{20} m ^{-s} . If the electron drift velocity is 100					
IIST	ASS	ms ⁻¹ in an electric field of 200 Vm ⁻¹ , the conductivity (in Ω^{-1} m ⁻¹) of this material is					
, ME	STON	(a) 24 (b) 36 (c) 48 (d) 96 (d) 96					
PILIDA	Q69.1	Density of states of free electrons in a solid moving with an energy 0.1 eV is given by $2.15 \times 10^{21} \text{ eV}^{-1} \text{ cm}^{-3}$. The density of states (in eV-1 cm ⁻³) for electrons moving with an energy of 0.4 eV will be					
EOF,	TIMIS	(a) 1.07×10^{21} (b) 1.52×10^{21} (c) 3.04×10^{21} (d) 4.30×10^{21}					
THE	Q70.	The effective density of states at the condution band edge of Ge is $1.04 \times 10^{19} cm^{-3}$ at room temperature (300 K). Ge has an optical bandgap of $0.66eV$. The intrinsic carrier concentration (in cm^{-3}) in Ge at room temperature (300 K) is approximately					
SES	THE	temperature (300K) is approximately (a) 3×10^{10} (b) 3×10^{13} (c) 3×10^{16} (d) 3×10^{16}					
, sŝ	5Q71.	For a conventional superconductor, which of the following statements is NOT true?					
LASI	SES	temperature (300 K) is approximately (a) 3×10^{10} (b) 3×10^{13} (c) 3×10^{16} (d) 3×10^{16} For a conventional superconductor, which of the following statements is NOT true? (a) Specific heat is discontinuous at transition temperature T_C (b) The resistivity falls sharply at T_C (c) It is diamagnetic below T_C					
CLA	,5°	(b) The resistivity falls sharply at T_c					
3	CLASS	(c) It is diamagnetic below T_C					
MIST	CLA	(a) Specific heat is discontinuous at transition temperature T_C (b) The resistivity falls sharply at T_C (c) It is diamagnetic below T_C (d) It is paramagnetic below T_C					
OPTI	Q72.	(d) It is paramagnetic below T_C A Nucleus having mass number 240 decays by a emission to the ground state of its daughter nucleus. The Q value of the process is 5.26 MeV. The energy (in MeV) of the a particle is: (a) 5.26 (b) 5.17 (c) 5.13 (d) 5.09 The threshold temperature above which the thermonuclear reaction ${}^3_2He + {}^3_2He \rightarrow {}^4_2He + {}^1_1H + 12.86 \text{ MeV}$ Can occur is $\left(\text{use } e^2/4\pi\varepsilon_0 = 1.44 \times 10^{-15} \text{MeV-m}\right)$ (a) $1.28 \times 10^{10} \text{K}$ (b) $1.28 \times 10^9 \text{K}$ (c) $1.28 \times 10^8 \text{K}$ (d) $1.28 \times 10^7 \text{K}$					
)	PIMI	(a) 5.26 (b) 5.17 (c) 5.13 (d) 5.09					
THE	Q73.	The threshold temperature above which the thermonuclear reaction					
;S	HE OF	The threshold temperature above which the thermonuclear reaction ${}^{3}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + 2{}^{1}_{1}H + 12.86 \text{ MeV}$ Can occur is (use $e^{2}/4\pi\varepsilon_{0} = 1.44 \times 10^{-15} \text{MeV-m}$) (a) $1.28 \times 10^{10} \text{K}$ (b) $1.28 \times 10^{9} \text{K}$ (c) $1.28 \times 10^{8} \text{K}$ (d) $1.28 \times 10^{7} \text{K}$ According to shell model, the ground state of ${}^{15}_{8}O$ nucleus is (a) $\frac{3^{+}}{2}$ (b) $\frac{1^{+}}{2}$ (c) $\frac{3^{-}}{2}$ (d) $\frac{1^{-}}{2}$ The plot of $\log A$ versus time t , where, A is activity, as shown in the figure, corresponds to decay					
CES	, Lit	Can occur is $\left(\text{use } e^2/4\pi\varepsilon_0 = 1.44 \times 10^{-15} \text{MeV-m}\right)$					
ASS	SES	(a) $1.28 \times 10^{10} \mathrm{K}$ (b) $1.28 \times 10^9 \mathrm{K}$ (c) $1.28 \times 10^8 \mathrm{K}$ (d) $1.28 \times 10^7 \mathrm{K}$					
CLA	Q74.	According to shell model, the ground state of 80 nucleus is					
, (LAS	SES 3+ THEOR TIMES 1+CLASE SES THEORY TIMES CLASS TO SES THEORY TIMES CLASS					
ME	CLAS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
TAIT	© Q75.	According to shell model, the ground state of ${}_{8}^{15}O$ nucleus is (a) $\frac{3^{+}}{2}$ (b) $\frac{1^{+}}{2}$ (c) $\frac{3^{-}}{2}$ (d) $\frac{1^{-}}{2}$ The plot of $\log A$ versus time t , where, A is activity, as shown in the figure, corresponds to decay					
JP 1	MIST	CLASS, IF OF I WIST CLASSI IS THE OPTIMAL OF ASSIST OF THE OPTIMAL					


- (a) from only one kind of radioactive nuclei having same half-life.
- (b) from only neutron activated nuclei
- (c) from a mixture of radioactive nuclei having different half-lives.
- (d) which is unphysical.
- For the rectifier circuit shown in the figure, the sinusoidal voltage $(V_1 \text{ or } V_2)$ at the output of the transformer has a maximum value of 10V. The load resistance R_L is $1 \text{k}\Omega$. If I_{ave} is the averge current through the resistor R_L the circuit corresponds.


- (b) Half wave rectifier with $I_{av} = 20/\pi$ mA (d) Full wave rectified.

- Q77. The Boolean expression: B(A+B) + A. $(\overline{B}+A)$ can be realized using minimum number of (a) 1 AND gate (b) 2 AND gates

- The output V_0 of the ideal OP-AMP circuit shown in the figure is:


- IMIST CLAS(d) 7 V
- The circuit shown in the figure can be used as a

- (a) high pass filter or differentiator
- (b) high pass filter or an integrator
- (c) low pass filter or a differentiator
- (d) low pass filter or an integrator

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

In the circuit shown in the figure the Thevenin voltage V_{Th} and Thevenin resistance R_{Th} as seen by the load resistance $R_L (= 1k\Omega)$ are respectively.

- (b) 30V, $4 \text{k}\Omega$
- (c) 20V, $2 k\Omega$
- (d) 10V

Linkes Answer Questins: Q. 81a to Q. 85.b carry two marks each. Statement for Linked Answer Q. 27 and Q 28:

For the differential equation

- Q81a. One of the solutions is:

- (b) $\ln x$
- THE (d) ex2

Q81b. The second linearly independent solution is:

- (d) v?

Statement for Linked Answer Q.82a and Q.82b:

The Lagrangian of two coupled oscillators of mass m each is

$$L = \frac{1}{2}m(\dot{x}_1^2 + \dot{x}_2^2) - \frac{1}{2}m\omega_0^2(x_1^2 + x_2^2) + m\omega_0^2\mu x_1 x_2$$

2a. The equation of motion are

(a)
$$\ddot{x}_1 + \omega_0^2 \mu x_1 = \omega_0^2 \mu x_1, \ddot{x}_2 + \omega_0^2 x_2 = \omega_0^2 \mu x_1$$

(b)
$$\ddot{x}_1 + \omega_0^2 x_1 = \omega_0^2 \mu x_2$$
, $\ddot{x}_2 + \omega_0^2 x_2 = \omega_0^2 \mu x_1$

(c)
$$\ddot{x}_1 + \omega_0^2 \mu x_1 = \omega_0^2 \mu x_1, \ddot{x}_2 + \omega_0^2 x_2 = -\omega_0^2 \mu x_2$$
 (d) $\ddot{x}_1 + \omega_0^2 \mu x_1 = \omega_0^2 \mu x_2$

(d)
$$\ddot{x}_1 + \omega_0^2 \mu x_1 = \omega_0^2 \mu x_1, \ \ddot{x}_2 + \omega_0^2 x_2 = \omega_0^2 \mu x_1$$

Q82b. The normal modes of the system are

(a)
$$\omega_0 \sqrt{\mu^2 - 1}$$
, $\omega_0 \sqrt{\mu^2 + 1}$

(b)
$$\omega_0 \sqrt{1 - \mu^2}$$
, $\omega_0 \sqrt{1 + \mu^2}$

(c)
$$\omega_0 \sqrt{\mu - 1}, \omega_0 \sqrt{\mu + 1}$$

(d)
$$\omega_0 \sqrt{1-\mu}$$
, $\omega_0 \sqrt{1+\mu}$

Statement for linked Answer Q. 83a. and Q. 83b:

An infinitely long hollow cylinder of radius R carrying a surface charge density σ is rotated about its cylinderical axis with a constant angular speed ω

Q83a. The magnitude of the surface current is:

- (a) $\sigma R\omega$
- (c) $\pi \sigma R \omega$

The magnitude of vector potential inside the cylinder at a distance from its axis is:

- (a) $2\mu_0 \sigma R \omega r$
- (b) $\mu_0 \sigma R \omega r$
- $(d)\frac{1}{4}\mu_0\sigma R\omega r$

Common data for Q.84a and Q.84b

A particle is scattered by spherically symmetric potential. In the centre of mass (CM) frame the

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

THE OPTIMIST C

THE OPTIMIST CLAS

THE OPTIMIST

wavefunction of the incoming particle is $\psi = Ae^{ikz}$ where k is the wavevector and A is a constant.

Q84a. If $f(\theta)$ is an angular function then in the asymptotic region the scattered wavefunction has the form

(a)
$$\frac{Af(\theta)e^{ikr}}{r}$$

(b)
$$\frac{Af(\theta)e^{-ikr}}{r}$$

(c)
$$\frac{\text{Af}(\theta) e^{ikr}}{r^2}$$

(d)
$$\frac{Af(\theta)e^{-ikt}}{r^2}$$

Q84b. The differential scattering cross section $\sigma(\theta)$ in CM frame is:

(a)
$$\sigma(\theta) = |\mathbf{A}|^2 \frac{|\mathbf{f}(\theta)|^2}{r^2}$$

(b)
$$\sigma(\theta) = |A|^2 |f(\theta)|^2$$

(c)
$$\sigma(\theta) = |f(\theta)|^2$$

(d)
$$\sigma(\theta) = |A||f(\theta)|$$

Statement for Linked Answer Q. 85(a) and 85(b):

Q85.a Number of atoms per cm³ for lead is

(a)
$$1.1 \times 10^{25}$$

(b)
$$3.3 \times 10^{22}$$

(c)
$$1.1 \times 10^{22}$$

(d)
$$3.3 \times 10^{25}$$

(d) $\sigma(\theta) = |A||f(\theta)|$ Lead has atomic weight of 207.2 amu and density of 11.35gm cm⁻³.

Number of atoms per cm³ for lead is

(a) 1.1×10^{25} (b) 3.3×10^{22} Q85.b If the energy of vacancy formation in lead is 0.55 eV/atoms, the number of vacancies/cm³ at 500 K is

(a)
$$3.2 \times 10^{16}$$

(b)
$$3.2 \times 10^{19}$$

THE OPPIMIST C

THE OPTIMIST CL

THE OPTIMIST CLASSES

THE OPTIMIST CLASSES

(c)
$$9.5 \times 10^{19}$$

(d)
$$9.5 \times 10^{16}$$

THE OPTIMIST CLASSES

THE OPTIMIST CLASSES

THE OPTIMIST CL

	ANSWER KEY									
~	TE.	OTIME TOL	SE	S THE	3. FIME	Chr	ES.	THE TIME	, C	LP.
>	1.	(c) (l)	2. 1	(d)	3. ′	(c) AS-	4.	(b) (a) (b)	5,15	(c)
	1. 6. Hill	(d) p find (e) (b) (c) (b) (find (e) (find (e) (find (e) (e) (find (e) (e) (e) (e) (find (e)	7.	(none)	8. PT	(c)	4. 9.5ES	(a) 111111 P	10.	(a)
	11.	(p) [Min	12.	(b) (a) (b)	8. 13.	(d))/I 4	. 44.1	15.	(d)
	16. 21.	(c) (c)	17.	(0) 2	`18. ((c) (5)	19.	(c)	20.	(a)
C	21.	(p)	22.	(a) 25 C	23,	(a) Prime	24.		25.	(a)
J.	20.	7(a) xx	ZANY	(a) (b)	28.	(a) Prime	29.	(a) <	30.	(d)
	31.	(")	32.	(a) (b) (b) (c) (d)	33. ``	(b) (c)	34,	(d) 551	35.	(b)
2	36.	(a) (iii)	37.	(d) (C)	38. 43.	(c)	39.	(c) (b) ASSES	40.	(b)
	41.	(c) (s)	42.		43.	(b) (b)	44.	(b)	45.	(c)
	46.	(c) (c)	47.	(d) (b) (This i	48.55		49.	(a) S	50.	(c)
Z.	51.	(d)	52.	(b)	53.	(a)	54 . <		2262	(d)
	56.	(b)	57.	(c)	58.	>(D) ^	590	(c) 1151	60.	(b)
R	61.	(a) 551	62. <	(c) 27 Th	63.	(b) 55 ×	64.		65. gs	(c)
	66.	(b) (b)	<u>67.</u>	(b) (c) (a) (b) (b) (c) (b) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	68.	(a) (a) (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	69.	(a) (d) (d)	70.	(b)
	71.	(d) (5)	14.	(b) (c)	13.	(a) 55°	74.	(d) 8	75.	(c)
	76.	(a)	77.5	(c) (lill)	78.	(a) <5'	19. <	(d) OPTIME	80.	(a)
	81.a		81.b	(b)	82.a	(b)	82.b	(d) (v)	83.a	(a)
	23 h	(c) , c)	21 a C	79)	84 h	(c) ~	25 a	(b)	25 h	(d)