E OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

PAWAN

SATYAM

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHITAGGARWAL

SHIKHAR CHAMOLI

SWAPNIL JOSHI

LOKESH BHAT

CSIR-NET-JRF RESULTS 2022

ANNU OF THE

....AR UP15000162 ALANKAR

JAYESTHI RJ11000161

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

THE OPTIMIS

CHANDAN RJ09000159

SAIKHOM JOHNSON

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

JYOTSNA KOHLI UK02000262

SHYAM SUNDAR RJ060000

CONTACT: 9871044043

GATE PAPER 2009

- Q1. The value of the contour integral $\int_{C} \vec{r} \times d\vec{\theta}$, for a circle C of radius r with center at the origin is

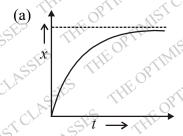
 (a) $2\pi r$ (b) $\frac{r^2}{2}$ (c) πr^2 (d) r

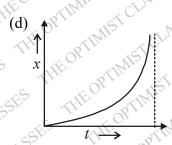
- An electrostatic field \vec{E} exists in a given region R. Choose the WRONG statement.
 - (a) Circulation of \vec{E} is zero
 - (b) E can always be expressed as the gradient of a scalar field
 - (c) The potential difference between any two arbitrary points in the region R is zero
 - (d) The work done in a closed path lying entirely in R is zero
- The Lagrangian of a free particle in spherical polar co-ordinates is given by \bar{L} = $\frac{\partial L}{\partial \dot{\phi}} \leq 1$ The quantity that conserved is

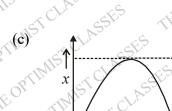
- (d) $\frac{\partial L}{\partial \dot{\phi}} + \dot{r}\dot{\theta}$
- A conducting loop L of surface area S is moving with a velocity \vec{v} in a magnetic filed $\vec{B}(\vec{r},t) = \vec{B}_0 t^2$, B_0 positive constant of suitable dimensions. The emf induced, $V_{\it emf}$, in the loop is given by

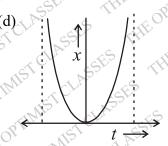
- (b) $\oint_L (\vec{v} \times \vec{B}) . d\vec{L}$

- $(d) \int_{S} \frac{\partial \vec{B}}{\partial t} d\vec{S} + \oint_{L} (\vec{v} \times \vec{B}) d\vec{L}$ The eigenvalues of the matrix $A = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ are


 (a) real and distinct
 (c) complex and Li 0 aresses


- (c) complex and coinciding


- Q6. σ_i (i = 1, 2, 3) represent the Pauli spin matrices. Which of the following is NOT true?
 - (a) $\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_i$


- (b) $Tr(\sigma_i) = 0$
- (c) The eigenvalues of σ_i are ± 1
- (d) $\det (\sigma_i) = 1$
- Q7. Which one of the function given below represents the bound state eigen function of the operator $-\frac{d^2}{dx^2}$ in the region $0 \le x < \infty$, with the eigenvalue -4?
 - (a) $A_0 e^{2x}$
- (b) $A_0 \cosh 2x$
- (c) $A_0 e^{-2x}$
- $(d) A_0 \sinh 2x$

- Q8. Pick the wrong statement
 - (a) the nuclear force is independent of electric charge
 - (b) The Yukawa potential is proportinoal to $r^{-1} \exp\left(\frac{mc}{h}r\right)$. Where, r is the separation between two nucleons.
 - (c) The range of nuclear force is of the order of $10^{-15} 10^{-14} m$
 - (d) the nucleons interact among each other by the exchange of mesons.
- Q9. If *p* and *q* are the position and momentum variables, which one of the following is NOT a canonical transformation?
 - (a) $Q = \alpha q$ and $P = \frac{1}{\alpha} p$, for $\alpha \neq 0$
 - (b) $Q = \alpha q + \beta p$ and $P = \beta q + \alpha p$ for α, β real and $\alpha^2 \beta^2 = 1$
 - (c) Q = p and P = q
 - (d) Q = p and P = -q
- Q10. The common Mode Rejection Ratio (CMRR) of a differential amplifier using an operational amplifier is 100dB. The output voltage for a differential input of $200 \mu V$ is 2V. The common mode gain is
 - (a) 10
- (b) 0.1
- (c) 30 dB
- (d) 10 *dB*
- Q11. In an insulating solid which one of the following physical phenomena is a consequence of Pauli's exclusion priciple?
 - (a) Ionic conductivity (b) Ferromagnetism
- (c) Paramagnetism
- (d) Ferroelectricity
- Q12. Which one of the following curves gives the solution of the differential equation $k_1 \frac{dx}{dt} + k_2 x = k_3$, where k_1 , k_2 and k_3 are positive real constants with initial conditions x = 0 at t = 0?

- Identify which one is a first order phase transition?
 - (a) A liquid to gas transition at its critical temperature.
 - (b) A liquid to gas transition close to its triple point.
 - (c) A paramegnetic to ferromagnetic transition in the absence of a magnetic field.
 - (d) A metal to superconductor transition in the absence of a magnetic field.
- Group -I lists some physical phenomena while Group II gives some physical parameters. Match the phenomena with the corresponding parameter.

Group I

- P. Doppler Broadening
- Q. Natural Broadening
- R. Rotational spectrum
- S. Total internal reflection
- (a) P-4, Q-3, R-1, S-2
- (c) P-2, Q-3, R-4, S-1

Group II


- 1. Moment of inertia
- 2. Refractive index
- 3. Lifetime of the energy level
- 4. Pressure
- (b) P-3, Q-2, R-1, S-4
- (d) P-1, Q-4, R-2, S-3
- The separation between the first stokes and corresponding anti-stokes lines of the rotational Raman spectrum in terms of the rotational constant, B is:
- (b) 4*B*
- (c) 6B
- A superconducting ring is cooled in the presence of a magnetic field below its critical temperature (T_c) . The total magnetic flux that passes through the ring is
 - (a) zero

- In a cubic crystal, atoms of mass M_1 lie on one set of planes and atoms of mass M_2 lie on planes inter leaved between those of the first set. If C is the force constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wavevector k = 0 is

(a)
$$\sqrt{2C\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$
 (b) $\sqrt{C\left(\frac{1}{2M_1} + \frac{1}{M_2}\right)}$ (c) $\sqrt{C\left(\frac{1}{M_1} + \frac{1}{2M_2}\right)}$ (d) zero

- In the quark model which one of the following represents a proton?
- (b) *uud*

The circuit shown below

- (a) Is a common-emitter amplifier
- (c) Is an oscillator

- (b) Uses a pnp transistor
 - (d) Has a voltage gain less than one.

Conside a nucleus with N neutrons and Z protons. If m_p , m_n and B.E. represents the mass of the proton, the mass of the neutron and the binding energy of the nucleus respectively and c is the velocity of light in free space the mass of the nucleus is given by

(a)
$$Nm_n + Zm_p$$

(b)
$$Nm_p + Zm_n$$

(c)
$$Nm_n + Zm_p - \frac{B.E.}{c^2}$$

(d)
$$Nm_p + Zm_n + \frac{B.E.}{c^2}$$

Q.21 - Q.60 : Carry TWO marks eachQ21. The magnetic field (in Am^{-1}) Q.21 - Q.60 : Carry TWO marks each

The magnetic field (in $A m^{-1}$) inside a long solid cylindrical conductor of radius a = 0.1 m is,

 $\vec{H} = \frac{10^4}{r} \left[\frac{1}{\alpha^2} \sin(\alpha r) - \frac{r}{\alpha} \cos(\alpha r) \right] \hat{\phi}, \text{ where } \alpha = \frac{\pi}{2a} \text{ What is the total current (in A) in the conductor?}$ (a) $\frac{\pi}{2a}$ (b) $\frac{800}{\pi}$ (c) $\frac{400}{\pi}$ (d) $\frac{300}{\pi}$ Q22. Which one of the following current denotes:

(a)
$$\frac{\pi}{2a}$$

(b)
$$\frac{800}{\pi}$$

(c)
$$\frac{400}{\pi}$$

(d)
$$\frac{300}{\pi}$$

Which one of the following current densities, \vec{j} , can generate the magnetic vector potential $\vec{A} = (y^2 \hat{i} + x^2 \hat{j})$?

(a) $\frac{2}{\mu_0} (x \hat{i} + y \hat{j})$ (b) $-\frac{2}{\mu_0} (\hat{i} + \hat{j})$ (c) $\frac{2}{\mu_0} (\hat{i} - \hat{j})$

(a)
$$\frac{2}{\mu_0} \left(x\hat{i} + y\hat{j} \right)$$

(b)
$$-\frac{2}{\mu_0}(\hat{i}+\hat{j})$$

(c)
$$\frac{2}{\mu_0} (\hat{i} - \hat{j})$$

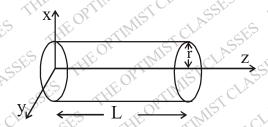
(d)
$$\frac{2}{\mu_0} \left(x\hat{i} - y\hat{j} \right)$$

- Q23. The value of the integral $\int_{C} \frac{e^{z}}{z^{2}-3z+2} dz$, where the contour C is the circle $|z| = \frac{3}{2}$ is

 (a) $2\pi ie$ (b) πie

- (a) $2\pi ie$ (b) πie (c) $-2\pi ie$ (d) $-\pi ie$ Q24. In a non-conducting medium characterized by $\varepsilon = \varepsilon_0$, $\mu = \mu_0$ and conductivity $\sigma = 0$, the electric field (in Vm^{-1}) is given by $\vec{E} = 20\sin\left[10^8t - kz\right]\hat{j}$. The magnetic field, \vec{H} (in Am^{-1}), is given by:

(a)
$$20k \cos\left[10^8t + kz\right]\hat{i}$$

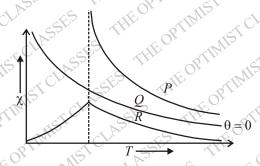

$$\begin{bmatrix} 0^8t - kz \end{bmatrix} \hat{j}$$
. The magnetic field, \vec{H} (in A \hat{k})
$$(b) \frac{20k}{10^8 \mu_0} \sin \left[10^8t - kz \right] \hat{j}$$

$$(d) -20k \cos \left[10^8t - kz \right] \hat{j}$$

(c)
$$-\frac{20k}{10^8 \mu_0} \sin \left[10^8 t - kz \right] \hat{i}$$

(d)
$$-20k \cos \left[10^8 t - kz \right] \hat{j}$$

(d) $-20k \cos \left[10^8 t - kz\right] \hat{j}$ of an inhomogenebelow. $\frac{20k}{10^8 \mu_0} \sin \left[10^8 t - kz \right] \hat{i}$ 25. Acylindrical rod A cylindrical rod of length L and radius r, made of an inhomogeneous dielectric, is placed with its axis along the z direction with one end at the origin as shown below: z direction with one end at the origin as shown below:

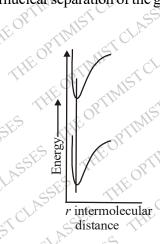

- If the rod carries a polarization, $\vec{P} = (5z^2 + 7)\hat{k}$, the volume bound charge inside the dielectric is:

 (a) zero
 (b) $10\pi r^2 L$ (c) $-5\pi r^2 L$ (d) $-5\pi r^2 L^2$ Q26. Let $T_{ij} = \sum_{k} \varepsilon_{ijk} a_k$ and $\beta_k = \sum_{i,j} \varepsilon_{ijk} T_{ij}$ where ε_{ijk} is the Levi-Civita density, defined to be zero if two of the indices coincide and +1 and -1 depending on whether ijk is even or $c^{-1/2}$.

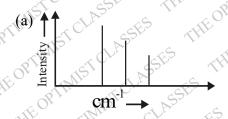
equal to

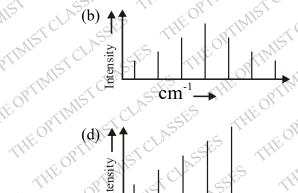
- The dependece of the magnetic susceptibility (χ) of a material with temperature (T) can be represented by $\chi \propto \frac{1}{T-\theta}$, where θ is the Curie-Weiss temperature. The plot of magnetic susceptibility versus temperature is

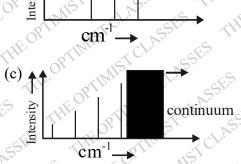
sketched in the figure, as curves P, Q and R with curve Q having $\theta = 0$. Which one of the following statements is correct?

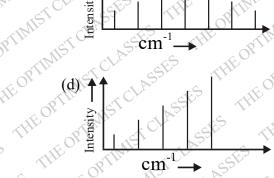

- (a) Curve R represents a paramagnet and Q a ferromagnet
- (b) Curve *Q* represents a ferromagnet and *P* an antiferromagnetic
- (c) Curve R represents an antiferromagnet and Q a paramagnetic
- (d) Curve R represents an antiferromagnet and Q a ferromagnet
- The dielectric constant of a material at optical frequencies is mainly due to
 - (a) inonic polarizability

(b) electronic polarizability

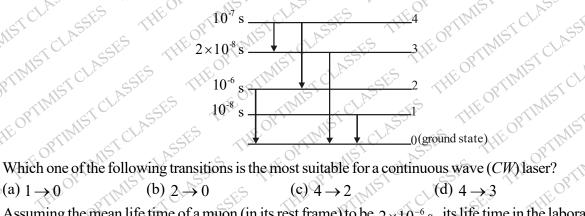

(c) dipolar polarizability


- (d) ionic and dipolar polarizability
- An electron of wavevector \vec{k}_e , velocity \vec{v}_e and effective mass m_e is removed from a filled energy band. The resulting hole has wavevector \vec{k}_h , velocity \vec{v}_h , and effective mass m_h . Which one of the following statements is correct?
- (a) $\vec{k}_h = -\vec{k}_e; \vec{v}_h = -\vec{v}_e; m_h = -m_e$ (b) $\vec{k}_h = \vec{k}_e; \vec{v}_h = -\vec{v}_e; m_h = -m_e$


- (a) $\vec{k}_h = -\vec{k}_e; \vec{v}_h = -\vec{v}_e; m_h = -m_e$ (b) $\vec{k}_h = \vec{k}_e; \vec{v}_h = \vec{v}_e; m_h = m_e$ (c) $\vec{k}_h = \vec{k}_e; \vec{v}_h = -\vec{v}_e; m_h = -m_e$ (d) $\vec{k}_h = -\vec{k}_e; \vec{v}_h = \vec{v}_e; m_h = -m_e$ Q30. In a diatomic molecule, the internuclear separation of the ground and first excited electronic state the same as a shown in the form shown in the figure.



If the molecule is initially in the lowest vibrational state of the ground state, then the absorption spetrum will appear as



cm — cm — Five energy level of a system including the ground sate are shown below. Their lifetimes and the allowed electric dipole transitions are also marked.

(a)
$$1 \rightarrow 0$$

(b)
$$2 \rightarrow 0$$

(c)
$$4 \rightarrow 2$$

(d)
$$4 \rightarrow 3$$

Assuming the mean life time of a muon (in its rest frame) to be $2 \times 10^{-6} \, \text{s}$, its life time in the laboratory frame, when it is moving with a velocity 0.95c is

(a)
$$6.4 \times 10^{-6}$$
 s

(b)
$$0.62 \times 10^{-6} s$$

(c)
$$2.16 \times 10^{-6} s$$

(c)
$$2.16 \times 10^{-6} s$$
 (d) $0.19 \times 10^{-6} s$

- Cesium has a nuclear spin of 7/2. The hyperfine spectrum of the D lines of the Cesium atom will consist of
- The probability that an energy level ε at a temperature T is unoccupied by a fermion of chemical potential μ is given by is given by

(a)
$$\frac{1}{e^{(\varepsilon-\mu)/k_BT}+1}$$

(b)
$$\frac{1}{e^{(\varepsilon-\mu)/k_BT}-1}$$

(c)
$$\frac{1}{e^{(\mu-\varepsilon)/k_BT}+1}$$

(d)
$$\frac{1}{e^{(\mu-\varepsilon)/k_BT}-1}$$

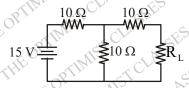
(a) $\frac{1}{e^{(\varepsilon-\mu)/k_BT}+1}$ (b) $\frac{1}{e^{(\varepsilon-\mu)/k_BT}-1}$ (c) $\frac{1}{e^{(\mu-\varepsilon)/k_BT}+1}$ Q35. Consider the following expression for tConsider the following expression for the mass of a nucleus with Z protons and A nucleons.

$$M(A,Z) = \frac{1}{c^2} \left[f(A) + yZ + zZ^2 \right]$$
. Here, $f(A)$ is a function of A .

$$y = -4a_A$$
$$z = a_c A^{-1/3} + 4a_A A^{-1}$$

 a_A and a_c are constants of suitable dimensions. For a fixed A, the expression of Z for the most stable nucleus is a fixed A, the till of the control o

is
(a)
$$Z = \frac{A/2}{1 + \left(\frac{a_c}{a_A}\right) A^{2/3}}$$

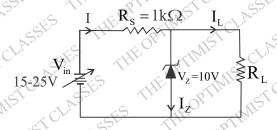

(b)
$$Z = \frac{A/2}{\left[1 + \left(\frac{a_c}{4a_A}\right)A^{2/3}\right]}$$

(c)
$$Z = \begin{bmatrix} A \\ 1 + \left(\frac{a_c}{4a_A}\right)A^{2/3} \end{bmatrix}$$

(d)
$$Z = \frac{A}{1 + A^{2/3}}$$

- The de Broglie wavelength of particles of mass m with average momentum p at a temperature T in three dimensioons is given by
- $\frac{h}{\sqrt{2mk_BT}} \qquad \text{(b)} \quad \lambda = \frac{h}{\sqrt{3mk_BT}}$

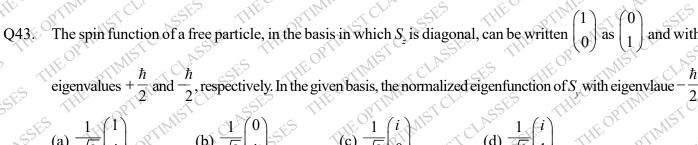
- Assuming an ideal voltage source, Thevenin's resistance and Thevenin's voltage respectively for the below



- (a) 15Ω and 7.5V
- (b) 20Ω and 5V
- (c) 10Ω and 10V (d) 30Ω and 15V
- Q38. Let $|n\rangle$ and $|p\rangle$ denote the isospin state with $I = \frac{1}{2}$, $I_3 = \frac{1}{2}$ and $I = \frac{1}{2}$, $I_3 = -\frac{1}{2}$ of a nuclear respectivel. Which one of the following two nuclear state has I = 0, $I_3 = 0$?

Which one of the following two nuclear state has
$$I=0, I_3=0$$
?

(a) $\frac{1}{\sqrt{2}}(|nn\rangle-|pp\rangle)$ (b) $\frac{1}{\sqrt{2}}(|nn\rangle+|pp\rangle)$ (c) $\frac{1}{\sqrt{2}}(|np\rangle-|pn\rangle)$ (d) $\frac{1}{\sqrt{2}}(|np\rangle+|pn\rangle)$


- An amplifier of gain 1000 is made into a feedback amplifier by feeding 9.9% of its output voltage in series with the input opposing. If $f_L = 20 \, Hz$ and $f_H = 200 \, kHz$ for the amplifier without feedback, then due to the feed-
 - (a) The gain decreasse by 10 times
- (b) The output resistance increases by 10 times
- (c) The f_H increases by 100 times
- (d) The input resistance decreases by 100 times
- Pick the correct statement based on the below circuit

- (a) The maximum Zener current, $I_{Z(\max)}$, when $R_L = 10k\Omega$ is 15mA (b) The minimum Zener (b) The minimum Zener current, $I_{Z(min)}$, when $R_L = 10k\Omega$ is 15mA(c) With $V_{in} = 20V$, $I_L = I_7$, when $R_1 = 200$
- (c) With $V_{in} = 20V$, $I_L = I_Z$, when $R_L = 2k\Omega$
 - (d) The power dissipated across the Zener when $R_L = 10k\Omega$ and $V_{in} = 20V$ is $100 \, mW$
- The disintegration energy is defined to be the difference in the rest energy between the initial and final states. Consider the following process:

$$^{240}_{94}Pu \rightarrow ^{236}_{92}U + ^{4}_{2}He$$

PIIM	The emitted α particle has a kinetic energy 5.17 MeV. The value of the disintegration energy is (a) 5.26 MeV (b) 5.17 MeV (c) 5.08 MeV (d) 2.59 MeV)
Q42.	A classical particle is moving in an external potential field $V(x,y,z)$ which is invariant under the foinfinitesimal transformations	
SES	infinitesimal transformations $x \to x' = x + \delta x,$ $y \to y' = y + \delta y,$ $(x) = x + \delta x$	
J.A.S.E	$x \to x' = x + \delta x,$ $y \to y' = y + \delta y,$ $\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x' \\ y' \end{pmatrix} = R_z \begin{pmatrix} x \\ y \end{pmatrix}$ where R is the matrix element of the torotopic about the z -axis. The conserved quantities are (the	() L
IST C	where R_z is the matrix corresponding to rotation about the z-axis. The conserved quantities are (the	5
TIME	have their usual meaning) (a) p_x, p_z, L_z (b) p_x, p_y, L_z, E (c) p_y, L_z, E (d) p_y, p_z, L_y, E	
E OPT	have their usual meaning) (a) p_x, p_z, L_z (b) p_x, p_y, L_z, E (c) p_y, L_z, E (d) p_y, p_z, L_x, E	\lambda \cdot \cdo
0420	The spin function of a free controls in the basis in which S is diagonal, can be written $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	_

- Q44. \hat{A} and \hat{B} represents two physical characteristics of a quantum system. If \hat{A} is Hermitian, then for the product $\hat{A}\hat{B}$ to be Hermitian, it is sufficient that
 - (a) \hat{g} is Hermitian
- (b) \hat{B} is anti-Hermitian
 - (c) \hat{B} is Hermitian and \hat{A} and \hat{B} commute
- (d) \hat{B} is Hermitian and \hat{A} and \hat{B} is anti-commute.
- Q45. Consider the set of vectors in the three-dimensional real vectors space \mathbb{R}^3 , $S = \{(1,1,1),(1,-1,1),(1,1,-1)\}$ Which one of the following statements is true?
 - (a) S is not a linearly independent set
- (b) S is a basis for R^3
- (c) The vectors in S are orthogonal
- (d) An orthogonal set of vectors cannot be generated from S
- Q46. For a Fermi gas of N particles in three dimensional at T=0 K, the Fermi energy, E_F is proportional to
 - (a) $N^{2/3}$
- (b) $N^{3/2}$
- (c) N^3
- (d) N^2
- Q47. The Lagrangian of a diatomic molecule is given by $L = \frac{m}{2} \left(\dot{x}_1^2 + \dot{x}_2^2 \right) \frac{k}{2} \, x_1 x_2$, where m is the mass of each of the atoms and x_1 and x_2 are the displacements of atoms measured from the equilibrium position and k > 0. The normal frequencies are
 - (a) $\pm \left(\frac{k}{m}\right)^{1/2}$
- (b) $\pm \left(\frac{k}{m}\right)^{1/2}$
- (c) $\pm \left(\frac{k}{2m}\right)^{1/4}$
- $(d) \pm \left(\frac{k}{2m}\right)^{1/2}$

A particle is in the normalized state $|\Psi\rangle$ which is a superposition of the energy eigenstates $|E_0=10eV\rangle$ and 9. The Laws $|E_1 = 30eV\rangle$. The average value of energy of the particle in the state $|\Psi\rangle$ is 20eV. The state $|\psi\rangle$ is given by

(a)
$$\frac{1}{2} |E_0 = 10eV\rangle + \frac{\sqrt{3}}{4} |E_1 = 30eV\rangle$$

(b)
$$\frac{1}{\sqrt{3}} |E_0 = 10eV\rangle + \sqrt{\frac{2}{3}} |E_1 = 30eV\rangle$$

(c)
$$\frac{1}{2}|E_0 = 10eV\rangle - \frac{\sqrt{3}}{4}|E_1 = 30eV\rangle$$

(d)
$$\frac{1}{\sqrt{2}} |E_0| = 10 \, eV \rangle - \frac{1}{\sqrt{2}} |E_1| = 30 \, eV \rangle$$

The Lagrangian of a particle of mass *m* moving in one dimension is $L = \exp(\alpha t) \left[\frac{m\dot{x}^2}{2} - \frac{kx^2}{2} \right]$, where α and k are positive constant. The equation of α k are positive constant. The equation of motion of the particle is

(a)
$$\ddot{x} + \alpha \dot{x} = 0$$

(b)
$$\ddot{x} + \frac{k}{m}x = 0$$

(c)
$$\ddot{x} - \alpha \dot{x} + \frac{k}{m}x = 0$$
 (d) $\ddot{x} + \alpha \dot{x} + \frac{k}{m}x = 0$

(d)
$$\ddot{x} + \alpha \dot{x} + \frac{k}{m} x = 0$$

Q50. Two monochromatic waves having frequencies ω and $\omega + \Delta\omega(\Delta\omega << \omega)$ and corresponding wavelengths λ and $\lambda - \Delta \lambda (\Delta \lambda \ll \lambda)$ of same polarization, travelling along x-axis are superimposed on each other. The phase velocity and group velocity of the resultant wave are respesctively given by

(a)
$$\frac{\omega\lambda}{2\pi}$$
, $\frac{\Delta\omega\lambda^2}{2\pi\Delta\lambda}$

(b)
$$\omega \frac{\Delta \omega^2}{\Delta \lambda}$$

(c)
$$\frac{\omega\Delta\lambda}{2\pi}$$
, $\frac{\Delta\omega\Delta\lambda}{2\pi}$

(d)
$$\omega\Delta\lambda$$
, $\omega\Delta\lambda$

Common data for Questions 51 and 52

Consider a two level quantum system with energies $\epsilon_1 = 0$ and $\epsilon_2 = \epsilon$ The Helmholtz free arrange of ϵ_1

The Helmholtz free energy of the system is given by

(a)
$$-k_B T \ln \left(1 + e^{-\varepsilon/k_B T}\right)$$

(b)
$$k_B T \ln \left(1 + e^{-\varepsilon/k_B T}\right)$$

(c)
$$\frac{3}{2}k_BT$$

(d)
$$\varepsilon - k_B T$$

(a)
$$-k_BT \ln(1+e^{-\varepsilon/k_BT})$$
 (b) $k_BT \ln(1+e^{-\varepsilon/k_BT})$ (c) $\frac{3}{2}k_BT$ (d) $\varepsilon - k_BT$

The specific heat of the system is given

(a) $\frac{\varepsilon}{k_BT} \frac{e^{-\varepsilon/k_BT}}{(1+e^{-\varepsilon/k_BT})^2}$ (b) $\frac{\varepsilon^2}{k_BT^2} \frac{e^{-\varepsilon/k_BT}}{(1+e^{-\varepsilon/k_BT})}$ (c) $\frac{\varepsilon e^{-\varepsilon/k_BT}}{(1+e^{-\varepsilon/k_BT})^2}$ (d) $\frac{\varepsilon^2}{k_BT^2} \frac{e^{-\varepsilon/k_BT}}{(1+e^{-\varepsilon/k_BT})^2}$

Common data for Ouestions 53 and 54:

A free particle of mass m moves along the x-direction. At t = 0, the normalized wave function of the particle is $\frac{1}{(2\pi\alpha^2)^{1/4}} \exp\left[-\frac{x^2}{4\alpha^2} + ix\right]$, Where α is a real constant.

The expectation value of the momentum, in this state is

(b)
$$\hbar\sqrt{\alpha}$$

(c)
$$\alpha$$

(d)
$$\frac{\hbar}{\sqrt{\alpha}}$$

Q54. The expectation value of the particle energy is

(a)
$$\frac{\hbar^2}{2m} \frac{1}{2\alpha^{3/2}}$$

(b)
$$\frac{\hbar^2}{2m}\alpha$$

(c)
$$\frac{\hbar^2}{2m} \frac{4\alpha^2 + 1}{4\alpha^{3/2}}$$

$$(d)\frac{\hbar^2}{8m\alpha^{3/2}}$$

Common Data for Questions 55 and 56:

Consider the Zeeman splitting of

5. The 7 Consider the Zeeman splitting of a single electron system for the $3d \rightarrow 3p$ electric dipole transition.

- Q55. The Zeeman spectrum is:

(b) Only π polarized

- The fine structure line having the longest wavelength will split into

Statement for Linked Answer Questions 57 and 58:

(a) Randomly polarized (b) Only
$$\pi$$
 polarized (c) Only σ polarized (d) Both π and σ polarized The fine structure line having the longest wavelength will split into (a) 17 components (b) 10 components (c) 8 components (d) 4 components **Statement for Linked Answer Questions 57 and 58:**

The primitive translation vectors of the fcc reciprocal cubic (fcc) lattice are

$$\vec{a}_1 = \frac{a}{2}(\hat{j} + \hat{k}), \vec{a}_2 = \frac{a}{2}(\hat{i} + \hat{k}), \vec{a}_3 = \frac{a}{2}(\hat{i} + \hat{j})$$

The primitive translation vectors of the fcc reciprocal lattice are

Statement for Linked Answer Questions 57 and 58:

The primitive translation vectors of the fcc reciprocal cubic (fcc) lattice are

$$\vec{a}_1 = \frac{a}{2}(\hat{j} + \hat{k}), \vec{a}_2 = \frac{a}{2}(\hat{i} + \hat{k}), \vec{a}_3 = \frac{a}{2}(\hat{i} + \hat{j})$$
Q57. The primitive translation vectors of the fcc reciprocal lattice are

(a) $\vec{b}_1 = \frac{2\pi}{a}(-\hat{i}+\hat{j}+\hat{k}); \vec{b}_2 = \frac{2\pi}{a}(\hat{i}-\hat{j}+\hat{k}); \vec{b}_3 = \frac{2\pi}{a}(\hat{i}+\hat{j}-\hat{k})$
(b) $\vec{b}_1 = \frac{\pi}{a}(-\hat{i}+\hat{j}+\hat{k}); \vec{b}_2 = \frac{\pi}{a}(\hat{i}-\hat{j}+\hat{k}); \vec{b}_3 = \frac{\pi}{a}(\hat{i}+\hat{j}-\hat{k})$
(c) $\vec{b}_1 = \frac{\pi}{2a}(-\hat{i}+\hat{j}+\hat{k}); \vec{b}_2 = \frac{\pi}{2a}(\hat{i}-\hat{j}+\hat{k}); \vec{b}_3 = \frac{\pi}{2a}(\hat{i}+\hat{j}-\hat{k})$
(d) $\vec{b}_1 = \frac{3\pi}{a}(-\hat{i}+\hat{j}+\hat{k}); \vec{b}_2 = \frac{3\pi}{a}(\hat{i}-\hat{j}+\hat{k}); \vec{b}_3 = \frac{3\pi}{a}(\hat{i}+\hat{j}-\hat{k})$
Q58. The volume of primitive cell of the fcc reciprocal lattice is

(a) $4(\frac{2\pi}{a})^3$ (b) $4(\frac{\pi}{a})^3$ (c) $4(\frac{\pi}{2a})^3$ (d) $4(\frac{3\pi}{a})^3$

Statement for Linked Answer Questions.59 and 60:

The Karnaugh map of a logic circuit is shown below:

(b)
$$\vec{b}_1 = \frac{\pi}{a} \left(-\hat{i} + \hat{j} + \hat{k} \right); \vec{b}_2 = \frac{\pi}{a} \left(\hat{i} - \hat{j} + \hat{k} \right); \vec{b}_3 = \frac{\pi}{a} \left(\hat{i} + \hat{j} - \hat{k} \right)$$

(c)
$$\vec{b}_1 = \frac{\pi}{2a} \left(-\hat{i} + \hat{j} + \hat{k} \right); \ \vec{b}_2 = \frac{\pi}{2a} \left(\hat{i} - \hat{j} + \hat{k} \right); \ \vec{b}_3 = \frac{\pi}{2a} \left(\hat{i} + \hat{j} - \hat{k} \right)$$

(b)
$$\vec{b}_1 = \frac{\pi}{a} \left(-\hat{i} + \hat{j} + \hat{k} \right)$$
; $\vec{b}_2 = \frac{\pi}{a} \left(\hat{i} - \hat{j} + \hat{k} \right)$; $\vec{b}_3 = \frac{\pi}{a} \left(\hat{i} + \hat{j} - \hat{k} \right)$
(c) $\vec{b}_1 = \frac{\pi}{2a} \left(-\hat{i} + \hat{j} + \hat{k} \right)$; $\vec{b}_2 = \frac{\pi}{2a} \left(\hat{i} - \hat{j} + \hat{k} \right)$; $\vec{b}_3 = \frac{\pi}{2a} \left(\hat{i} + \hat{j} - \hat{k} \right)$
(d) $\vec{b}_1 = \frac{3\pi}{a} \left(-\hat{i} + \hat{j} + \hat{k} \right)$; $\vec{b}_2 = \frac{3\pi}{a} \left(\hat{i} - \hat{j} + \hat{k} \right)$; $\vec{b}_3 = \frac{3\pi}{a} \left(\hat{i} + \hat{j} - \hat{k} \right)$
Q58. The volume of primitive cell of the *fcc* reciprocal lattice is

(a) $4 \left(\frac{2\pi}{a} \right)^3$ (b) $4 \left(\frac{\pi}{a} \right)^3$ (c) $4 \left(\frac{\pi}{2a} \right)^3$ (d) $4 \left(\frac{3\pi}{a} \right)^3$

Statement for Linked Answer Questions.59 and 60:

The Karnaugh map of a logic circuit is shown below:

(a)
$$4\left(\frac{2\pi}{a}\right)$$

(b)
$$4\left(\frac{\pi}{a}\right)$$

(c)
$$4\left(\frac{\pi}{2a}\right)^3$$

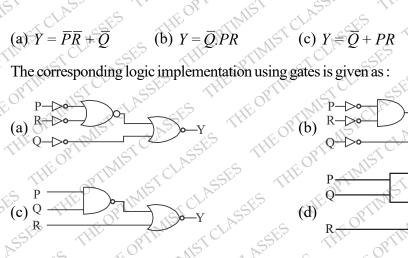
(d)
$$4\left(\frac{3\pi}{a}\right)$$

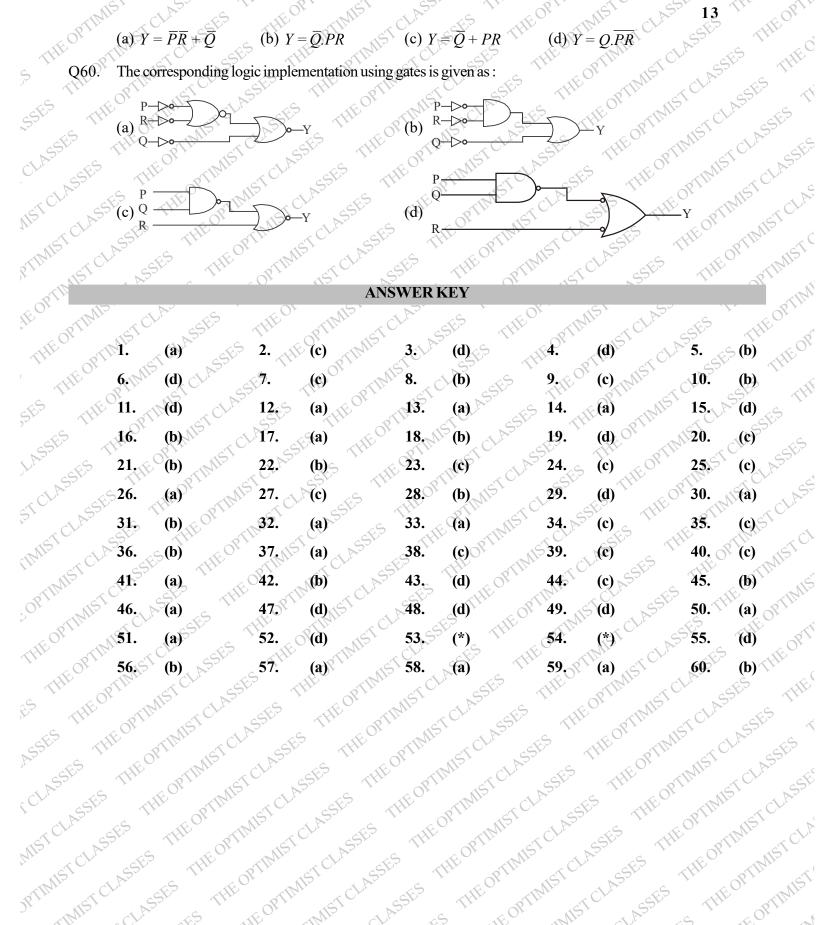
	$\overline{\mathbf{R}}$	R
$\overline{P}\overline{Q}$	1	di
$\overline{P}Q$	(D)	
PQ	, ,	CLA
ΡQ	NE S	1
-0	V	

Q59. The minimized logic expression for the above map is:

(a)
$$Y = \overline{P}\overline{R} + \overline{O}$$

(b)
$$Y = \overline{O}.PR$$


(c)
$$Y = \overline{Q} + PR$$
 (d)


(d)
$$Y = O.\overline{PR}$$

THE OPTIMIE, (a) $Y = \overline{P}\overline{R} + \overline{Q}$ Q60. The con-

(c)
$$Y = \overline{Q} + PR$$
 (d) $Y = Q.\overline{PR}$ gates is given as:

- 5. (b)

 (d) OPTIMES 15

 (c)