E OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

PAWAN

SATYAM

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHITAGGARWAL

SHIKHAR CHAMOLI

GAURAV JHA

SWAPNIL JOSHI

LOKESH BHAT

VAIBHAV

CSIR-NET-JRF RESULTS 2022

ANNU OF THE

....AR UP15000162 ALANKAR

JAYESTHI RJ11000161

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

THE OPTIMIS

CHANDAN RJ09000159

SAIKHOM JOHNSON

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

JYOTSNA KOHLI UK02000262

SHYAM SUNDAR RJ060000

THE OPTIMIST CLASSES

AN INSTITUTE FOR NET-JRF/GATE/IIT-JAM/JEST/TIFR/M.Sc ENTRANCE EXAMS

CONTACT: 9871044043

GATE PAPER 2017

MS'	AS A CORP (ST SS A) AND ST SS AND SS
RTIL	STON ASSES THE OPTIME ISTON SECTION-AFTE OPTIME ISTON ASES THE OPT
OPTIN	1. The ninth and the tenth of this month are Monday and Tuesday
ill apr	(a) figuratively (b) retrospectively (c) respectively (d) rightfully
THE Q	2. It is to read this year's textbook the last year's.
7)	(a) easier, than (b) most east, than (c) easier, from (d) easiest, from
Q	
CES	years old. Q is 25 years old, R is drinking milkshake and S is drinking a beer. What must be checked to ensure
57	that the rule is being followed?
SSED	(a) Only P's drink (b) Only P's drink and S's age
LAL	(c) Only S's age (d) Only P's drink, Q's drink and S's age
Q	4. Fatima starts from point P , goes North for $3km$, and then East for $4km$ to reach point. She then turns to face
at Or	point P and goes 15km in that direction. She then goes North for 6km. How far is she from point P, and in
in CI	which direction should she go to reach point <i>P</i> ? (a) 8km, East (b) 12km, North (c) 6km, East (d) 10km, North
MEL	(a) 8km, East (b) 12km, North (c) 6km, East (d) 10km, North 5.00 students are taking one or more courses out of Chemistry, Physics and Mathematics. Registration records
Lilly Cal	indicate course enrolment as follows: Chemistry (329), Physics (186), Mathematics (295), Chemistry and
TIMIL	Physics (83), Chemistry and Mathematics (217), and Physics and Mathematics (63). How many students are
, OP ,	taking all 3 subjects?
OP TI	(a) 37 (b) 43 (c) 47 (d) 53
THE Q	6. "If you are looking for a history of India, or for an account of the rise and fallof the British Raj, or for the reason
TEC	of the cleaving of the subcontinent into two mutually antagonistic parts and the effects this mutilation will have
This	in the respective sections, and ultimately on Asia, you will not find it in these pages: for though I have spent a
ÊS T	lifetime in the country, I lived too near the seat of events, and was too intimately associated with the actors, to
55	get the perspective needed for the impartial recording of these matters."
ASSIO	Which of the following statements best reflects the author's opinion?
J. CSE	(a) An intimate association does not allow for the necessary perspective.
CLAS	Which of the following statements best reflects the author's opinion? (a) An intimate association does not allow for the necessary perspective. (b) Matters are recorded with an impartial perspective. (c) An initmate association offers an impartial perspective.
S. A.	(c) An initmate association offers an impartial perspective,
C. C. C.	(d) Actors are typically associated with the impartial recording of matters.
MISTOR	7. Each of P,Q,R,S W,X,Y and Z has been married at most once, X and Y are married and have two children P
MST.	and Q,Z is the grandfather of the daughter S of P. Further, Z and W are married and are parents of R. Which one of the following must cecessarily be FALSE?
PIM	(a) X is the mother -in-law of R (b) P and R not married to each other
J. TIM	(a) A is the mother -in-law of K (b) I and K not married to Cach other (c) P is a son of X and Y (d) Q cannot be married to R
OPIO	8. 1200 men and 500 women can build a bridge in 2 weeks. 900 men and 250 women will take 3 weeks to build
HE OF	the same bridge. How many men will be needed to build the bridge in one week?
THE OF THE OF	(a) 3000 (b) 3300 (c) 3600 (d) 3900
	OP TOMEST CLASS STILL OP I THE CASSIVE THE OPTIVE METER ASSIVE

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

The number of 3-digit numbers such that the digit 1 is never to the immediate right of 2 is (b) 791 (c) 881 A contour line joins locations having the same height above the mean sea level. The following is a contour plot of a geographical region. Contour lines are shown at 25m intervals in this plot. 500 Which of the following is the steepest path leaving from P? (a) P to Q(b) P to RSECTION Q.1 - Q.25; Carry ONE mark each. Q.1 - Q.25 : Carry ONE mark each.

Q1. In the nuclear reaction $^{13}C_6 + v_e \rightarrow ^{13}N_7 + X$, the particle X is (d) a pion (c) a muon (b) an anti-electron (a) an electron Two identical masses of 10gm each are connected by a massless spring of spring constant 1N/m. The nonzero angular eigen frequency of the system is rad/s. (upto two decimal places). Consider a triatomic molecule of the shape shown in the figure below in three dimensions. The heat capacity of this molecule at high temperature (temperature much higher than the vibrational and rotational energy scales of the molecule but lower than its bond dissociation energies is: When $(c) \frac{9}{2}k_B$ is the optime $(c) \frac{9}{2}k_B$ is the o (b) $3k_B$ THE OPTIMIS Q4. The $\frac{3}{2}k_B$ (a) $\frac{1}{2}k_B$ (b) $3k_B$ (c) $\frac{3}{2}k_B$ (d) $6k_B$ For the Hamiltonian $H = a_0I + \vec{b}.\vec{\sigma}$ where $a_0 \in R, \vec{b}$ is a real vector, I is the 2×2 identity matrix and $\vec{\sigma}$ atrix $(\mathbf{d}) p_{y}^{\text{LASSES}}$ $(\mathbf{d}) d_{y}^{\text{LASSES}}$ $(\mathbf{d}) d_{y}^{\text{LASSES}}$ the Pauli matrices, the ground state energy is Q6. The wavefunction of which orbital is spherically symmetric:

(a) p_x (b) p_y (c) p_y (p) p_y

reflecting mirror. The pressure exerted on the mirror is

A monochromatic plane wave in free space with electric field amplitude of 1 V/m is normally incident on a fully reflecting mirror. The pressure exerted on the mirror is

 $\times 10^{-12} Pa$. (Up to two decimal places)

Q8. The electronic ground state energy of the Hydrogen atom is –13.6 eV. The highest possible electronic energy eigenstate has an energy equal to
Q8. The electronic ground state energy of the Hydrogen atom is $-13.6 eV$. The highest possible electronic energy eigenstate has an energy equal to (a) 0 (b) $1eV$ (c) $+13.6eV$ (d) ∞
Q9. Consider a one-dimensional lattice with a weak periodic potential $U(x) = U_0 \cos\left(\frac{2\pi x}{a}\right)$. The gap at the
Q8. The electronic ground state energy of the Hydrogen atom is $-13.6 eV$. The highest possible electronic energy eigenstate has an energy equal to (a) 0 (b) $1eV$ (c) $+13.6 eV$ (d) ∞ Q9. Consider a one-dimensional lattice with a weak periodic potential $U(x) = U_0 \cos\left(\frac{2\pi x}{a}\right)$. The gap at the edge of the Brillouin zone $\left(k = \frac{\pi}{a}\right)$ is: (a) U_0 (b) $\frac{U_0}{2}$ (c) $2U_0$ (d) $\frac{U_0}{4}$ Q10. Indentical charge q are placed at five vertices of a regular hexagon of side a . The magnitude of the electric field and the electrostatic potential at the centre of the hexagon are respectively
$\frac{U_0}{U_0} = \frac{U_0}{U_0} = $
Q10. Indentical charge q are placed at five vertices of a regular hexagon of side a . The magnitude of the electric field and the electrostatic potential at the centre of the hexagon are respectively (a) $0, 0$ (b) $\frac{q}{4\pi\varepsilon_0 a^2}, \frac{q}{4\pi\varepsilon_0 a}$ (c) $\frac{q}{4\pi\varepsilon_0 a^2}, \frac{5q}{4\pi\varepsilon_0 a}$ (d) $\frac{\sqrt{5}q}{4\pi\varepsilon_0 a^2}, \frac{\sqrt{5}q}{4\pi\varepsilon_0 a}$ Q11. A reversible Carnot engine is operated between temperatrues T_1 and T_2 ($T_2 > T_1$) with a photon gas as the working substance. The efficiency of the engine is (a) $1 - \frac{3T_1}{4T_2}$ (b) $1 - \frac{T_1}{T_2}$ (c) $1 - \left(\frac{T_1}{T_2}\right)^{3/4}$ (d) $1 - \left(\frac{T_1}{T_2}\right)^{4/3}$ Q12. The best resolution that a 7 bit A/D converter with $5V$ full scale can achieve is mV . (Up to two decimal places). Q13. If the Lagrangian $T_0 = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 - \frac{1}{2}m\omega^2q^2$ is modified to $T_0 = T_0$, which one of the following is TRUE? (a) Both the canonical momentum and equation of motion do not change
(a) $0, 0$ (b) $\frac{q}{4\pi\varepsilon_0 a^2}, \frac{q}{4\pi\varepsilon_0 a}$ (c) $\frac{q}{4\pi\varepsilon_0 a^2}, \frac{5q}{4\pi\varepsilon_0 a}$ (d) $\frac{\sqrt{5}q}{4\pi\varepsilon_0 a^2}, \frac{\sqrt{5}q}{4\pi\varepsilon_0 a}$
Q11. A reversible Carnot engine is operated between temperatrues T_1 and $T_2(T_2 > T_1)$ with a photon gas as the
working substance. The efficency of the engine is
(a) $1 - \frac{3T_1}{4T_2}$ (b) $1 - \frac{T_1}{T_2}$ (c) $1 - \left(\frac{T_1}{T_2}\right)^{3/4}$ (d) $1 - \left(\frac{T_1}{T_2}\right)^{4/3}$
Q12. The best resolution that a 7 bit A/D converter with $5V$ full scale can achieve is mV . (Up to two decimal places). Q13. If the Lagrangian $L_0 = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 - \frac{1}{2}m\omega^2q^2$ is modified to $L = L_0 + \alpha q\left(\frac{dq}{dt}\right)$, which one of the following is
Q13. If the Lagrangian $L_0 = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 - \frac{1}{2}m\omega^2q^2$ is modified to $L = L_0 + \alpha q\left(\frac{dq}{dt}\right)$, which one of the following is
TRUE? (a) Both the canonical momentum and equation of motion do not change (b) Canonical momentum changes, equation of motion does not change (c) Canonical momentum does not change, equation of motion changes (d) Both the canonical momentum and equation of motion change
Q14. A parallel plate capacitor with square plates of side 1m separated by 1 micro meter is filled with a medium of dielectric constant of 10. If the charges on the two plates are 1C and -1C, the voltage across the capacitor is
kV . (up to two decimal places). ($\varepsilon_0 = 8.854 \times 10^{-12} F/m$) Q15. The contour integral $\oint \frac{dz}{1+z^2}$ evaluated along a contour going from $-\infty$ to $+\infty$ along the real axis and closed in the lower half-plane by a half circle is equal to (Up to two decimal places). Q16. In the figure given below, the input to the primary of the transformer is a voltage varying sinusoidally with time.
the lower half-plane by a half circle is equal to (Up to two decimal places).
The resistor <i>R</i> is connected to the centre tap of the secondary. Which one of the following plots represents the voltage across the resistor <i>R</i> as a function of time?
233, FIRST FLOOR, LAXMI NAGAR DELHI-110092 CALL@ 09871044043 www.theontimistclasses.com Email: info@theontimistclasses.com

- Q17. Light is incident from a medium of refractive index n = 1.5 onto vacuum. The smallest angle of incidence for which the light is not transmitted into vacuum is degrees. (Upto two decimal places).
- Q18. Electromagnetic interactions are:
 - (a) C conserving

- (b) C non-conserving but CP conserving
- (c) CP non-conserving but CPT conserving
- (d) *CPT* non-conserving
- fm. (up to two decimal places). The Compton wavelength of a proton is

$$(m_p = 1.67 \times 10^{-27} kg, h = 6.626 \times 10^{-34} Js, e = 1.602 \times 10^{-19} C)$$
:

- Which one of the following conservation laws is violated in the decay $\tau^+ \rightarrow \mu^+$
 - (a) Angular momentum

(b) Total Lepton number

(c) Electric charge

- (d) Tau number
- The coefficient of e^{ikx} in the Fourier experiment of $u(x) = A \sin^2(ax)$ for k = -2a is
- (b) –*A*/4
- (c)A/2
- The phase space trajectory of a free particle bouncing between two hard walls elastically in one dimension is
 - (a) straight line
- (b) parabola
- (c) rectangle
- (d) circle
- The atomic mass and mass density of sodium are 23 and $0.968\,\mathrm{g\,cm^{-3}}$, respectively. The number density of $\times 10^{22}$ cm⁻³. (Upto two decimal places.) valence electrons is (Avogadro number, $N_A = 6.022 \times 10^{23}$).
- The degeneracy of the third energy level of a 3-dimensional isotropic quantum harmonic oscillator is

- (c) 8
- $\frac{1}{2}kx^2$ is subjected to a small A one dimensional simple harmonic oscillator with Hamiltonian $H_0 = \frac{p^2}{2m} +$ perturbation, $H_1 = \alpha x + \beta x^3 + \gamma x^4$. The first order correction to the ground state energy is dependent on

(a) only β

- (b) α and γ
- (c) α and β
- (d) only

Q.26 - Q.55: Carry TWO marks each.

Q26. Three charges (2C, -1C, -1C) are placed at the vartices of an equilateral triangle of side 1m as shown in the

figure. The component of the electric dipole moment about the marked origin along the \hat{y} direction is ____cm.

- Q27. An object travels along the x-direction with velocity c/2 in a frame O. An observer in a frame O' sees the same object travelling with velocity c/4. The relative velocity of O' with respect to O in units of c is _____. (up to two decimal places).
 - Q28. The energy density and pressure of a photon gas are given by $u = aT^4$ and P = u/3, where T is the temperture and a is the radiation constant. The entropy per unit volume is given by αaT^3 . The value of α is _____ (up to two decimal places.)
 - Q29. A person weighs w_p at Earth's north pole and w_e at the equator. Treating the Earth as a perfect sphere of radius 6400km, the value $100 \times (w_p w_e) / w_p$ is ______. (Upto two decimal palces).

 (Take $g = 10m/s^2$)
 - Q30. The minimum number of NAND gates required to construct an OR gate is:
 - (a) 2

(b) 4

(c)5

- (d) 3
- Q31. The total energy of an inert-gas crystal is given by $E(R) = \frac{0.5}{R^{12}} = \frac{1}{R^6}$ (in eV), where R is the inter-atomic spacing in Angstroms. The equilibrium separation between the atoms is ______Angstroms. (Upto two decimal places).
 - Q32. The imaginary part of an analytic complex function is v(x, y) = 2xy + 3y. The real part of the function is zero at the origin. The value of the real part of the function at 1 + i is . (Upto two decimal places).
 - Q33. Consider N non-interacting, distinguishable particles in a two-level system at temperature T. The energies of the levels are 0 and ε , where $\varepsilon > 0$. In the high temperature limit $(k_B T \gg \varepsilon)$, what is the population of particles in the level with energy ε ?
 - (a) $\frac{N}{2}$
- (b) Λ

- (c) $\frac{N}{\lambda}$
- (d) $\frac{3N}{4}$
- Q34. For the transistor amplifier circuit shown below with $R_1 = 10k\Omega$, $R_2 = 10k\Omega$, $R_3 = 1k\Omega$, and $\beta = 99$. Negalecting the emitter diode resistance, the input impedance of the amplifier looking into the base for small A.C. signal is $\underline{k\Omega}$. (up to decimal places).

- TIME	and the setting of the state of the setting of the
Q35.	Which one of the following gases of diatomic molecules is Raman, infrared, and NMR active?
o OP	(a) ${}^{1}\text{H}_{-}{}^{1}\text{H}$ (b) ${}^{12}\text{C}_{-}{}^{16}\text{O}$ (c) ${}^{1}\text{H}_{-}{}^{35}\text{C}_{1}$ (d) ${}^{16}\text{O}_{-}{}^{16}\text{O}$
Q36.	Let X be a column vector of dimension $n > 1$ with at least one-zero entry. The number of non-zero eigenvalues
THE	of the matrix $M = XX^T$ is (a) 0 (b) n (c) 1 (d) $n-1$
Q37.	A free electron of energy $1eV$ is incident upon a one-dimensional finite potential step of height $0.75eV$. The
455	probability of its reflection from the barrier is (Upto two decimal places)
Q38.	An infinite solenoid carries a time varying current $I(t) = At^2$, with $A \neq 0$. The axis of the solenoid is along the
I ASS	\hat{z} direction \hat{r} and $\hat{ heta}$ are the usual radial and polar directions in cylindrical polar coordinates
ST CL	$\vec{B} = B_r \hat{r} + B_\theta \hat{\theta} + B_z \hat{z}$ is the magnetic field at a point outside the solenoid. Which one of the following state-
STOI	ments is true? THE STIME TOLK SES THE STIME TOLK SES
MIL	(a) $B_r = 0$, $B_\theta = 0$, $B_z = 0$ (b) $B_r \neq 0$, $B_\theta \neq 0$, $B_z = 0$
DTIMIS	$B = B_r \hat{r} + B_\theta \theta + B_z \hat{z}$ is the magnetic field at a point outside the solenoid. Which one of the following statements is true? (a) $B_r = 0$, $B_\theta = 0$, $B_z = 0$ (b) $B_r \neq 0$, $B_\theta \neq 0$, $B_z = 0$ (c) $B_r \neq 0$, $B_\theta \neq 0$, $B_z \neq 0$ (d) $B_r = 0$, $B_\theta = 0$, $B_z \neq 0$ Consider two particles and two non-degenerate quantum levels 1 and 2. Level 1 always contains a particle
Q39.	Consider two particles and two non-degenerate quantum levels 1 and 2. Level 1 always contains a particle
TE OP	Hence, what is the probability that level 2 also contains a particle for each of the two cases:
J. J.	(i) when the two particles are distinguishable and
THE	(ii) when the two particles are bosons? (a) (i) 1/2 and (ii) 1/3 (b) 1/2 and (ii) 1/2 (c) (i) 2/3 and 1/2 (d) (i) 1 and (ii) 0
S T	
Q40.	The real space primitive lattice vectors are $\vec{a}_1 = a\hat{x}$ and $\vec{a}_1 = \frac{a}{2}(\hat{x} + \sqrt{3}\hat{y})$. The reciprocal space unit vectors
SSE	\vec{b}_1 and \vec{b}_2 for this lattice are, respectively (a) $\frac{2\pi}{a}(\hat{x} - \frac{\hat{y}}{\sqrt{3}})$ and $\frac{4\pi}{a\sqrt{3}}\hat{y}$ (b) $\frac{2\pi}{a}(\hat{x} + \frac{\hat{y}}{\sqrt{3}})$ and $\frac{4\pi}{a\sqrt{3}}\hat{y}$ 2π $4\pi(\hat{x} + \hat{y})$ 2π $4\pi(\hat{x} + \hat{y})$
CLAL	(a) $\frac{2\pi}{a} \left(\hat{x} - \frac{\hat{y}}{\sqrt{3}} \right)$ and $\frac{4\pi}{a\sqrt{3}} \hat{y}$ (b) $\frac{2\pi}{a} \left(\hat{x} + \frac{\hat{y}}{\sqrt{3}} \right)$ and $\frac{4\pi}{a\sqrt{3}} \hat{y}$ (c) $\frac{2\pi}{a\sqrt{3}} \hat{x}$ and $\frac{4\pi}{a} \left(\frac{\hat{x}}{\sqrt{3}} + \hat{y} \right)$ (d) $\frac{2\pi}{a\sqrt{3}} \hat{x}$ and $\frac{4\pi}{a} \left(\frac{\hat{x}}{\sqrt{3}} - \hat{y} \right)$ The geometric cross-section of two colliding protons at large energies is very well estimated by the product of the effective sizes of each particle. This is closest to
CLA	(a) $\frac{2\pi}{a} \left(\hat{x} - \frac{y}{\sqrt{3}} \right)$ and $\frac{4\pi}{a\sqrt{3}} \hat{y}$ (b) $\frac{2\pi}{a} \left(\hat{x} + \frac{y}{\sqrt{3}} \right)$ and $\frac{4\pi}{a\sqrt{3}} \hat{y}$ (c) $\frac{2\pi}{\sqrt{a}} \hat{x}$ and $\frac{4\pi}{a} \left(\frac{\hat{x}}{\sqrt{a}} + \hat{y} \right)$ (d) $\frac{2\pi}{a\sqrt{a}} \hat{x}$ and $\frac{4\pi}{a} \left(\frac{\hat{x}}{\sqrt{a}} - \hat{y} \right)$
MZ,	TASS TO THE OPT
MST	(c) $\frac{2\pi}{a\sqrt{3}}\hat{x}$ and $\frac{4\pi}{a}\left(\frac{\hat{x}}{\sqrt{3}}+\hat{y}\right)$ (d) $\frac{2\pi}{a\sqrt{3}}\hat{x}$ and $\frac{4\pi}{a}\left(\frac{\hat{x}}{\sqrt{3}}-\hat{y}\right)$
041	The geometric cross-section of two colliding protons at large energies is very well estimated by the product of
Q41	the effective sizes of each particle. This is closest to
TE OF	the effective sizes of each particle. This is closest to (a) $10 b$ (b) $10 mb$ (c) $10 \mu b$ (d) $10 pb$
Q42.	A uniform volume charge density is placed inside a conductor (with resistivity $10^{-2} \Omega m$). The charge density
	becomes 1/(2.718) of its original value after time femto seconds. (Up to two decimal places)
TS TI	$(\varepsilon_0 = 8.854 \times 10^{-12} F/m)^{-12}$
Q43.	Water freezes at $0^{\circ}C$ at atmospheric pressure $(1.01 \times 10^{5} \text{ Pa})$. The densities of water and ice at this tempera-
LASS	ture and pressure are $1000kg/m^3$ and $934kg/m^3$ respectively. The latent heat of fusion is 3.34×10^5 J/kg
AS	The pressure required for depressing the melting tempature of ice by $10^{\circ}C$ is GPa .
STOL	(Unto two decimal places)
Q44.	The integral $\int_{0}^{\infty} x^{2}e^{-x^{2}} dx$ is equal to (Upto two decimal places).
1/2.	The integral $\int_0^\infty x^2 e^{-x^2} dx$ is equal to (Upto two decimal places). J^P for the ground state of the $^{13}C_6$ nucleus is
Q45.	J^P for the ground state of the $^{13}C_6$ nucleus is
Ox	J^{p} for the ground state of the $^{13}C_{6}$ nucleus is $^{13}C_{6}$ nucl
TE OP	THE OPT ASSIVE THE OPT ASSIVE ASSIVE THE OPTH ASSIVE

(a) 1+

- (b) 3-10 PTM
- (c) $\frac{3^{+}}{2}$
- (d) $\frac{1}{2}$
- Q46. A uniform solid cylinder is released on a horizontal surface with speed 5*m*/s without any rotation (slipping witout rolling). The cylinder eventually starts rolling without slipping. If the mass and radius of the cylinder are 10*gm* and 1*cm* respectively, the final linear velocity of the cylinder is ______*m*/s. (Up to two decimal places)
- Q47. Consider a one-dimensional potential well of width 3*nm*. Using the uncertainty principle $(\Delta x.\Delta p \ge \hbar/2)$, are estimate of the minimum depth of the well such that it has at least one bound state for an electron is
 - $(m_e = 9.31 \times 10^{-31} kg, h = 6.626 \times 10^{-34} Js, e = 1.602 \times 10^{-19} C)$:
 - (a) 1μ*eV*
- (b) 1*meV*
- (c) 1eV
- (d) 1*MeV*
- Q48. Consider an ideal operational amplifier as shown in the figure below with $R_1 = 5 \,\mathrm{k}\Omega$, $R_2 = 1 \,\mathrm{k}\Omega$, $R_L = 100 \,\mathrm{k}\Omega$. For an applied input voltage $V = 10 \,\mathrm{m}V$, the current passing through R_2 is ______ $\mu\mathrm{A}$. (Up to two decimal places).

- Q49. The π^+ decays at rest to μ^+ and ν_μ . Assuming the neutrino to be massless, the momentum of the neutrino is MeV/c. (Up to two decimal places). $(m_\pi = 139 \text{ MeV/c}^2, m_\mu = 105 \text{ MeV/c}^2)$
- Q50. Consider the differential equation $\frac{dy}{dx} + y \tan x = \cos(x)$. If y(0) = 0, $y(\pi/3)$ is _____. (Up to two decimal places)
- Q51. Consider a metal with free electron density of 6×10^{22} cm⁻³. The lowest frequency electromagnetic radiation to which this metal is transparent is 1.38×10^{16} Hz. If this metal had a free electron density of 1.8×10^{23} cm⁻³ instead, the lowest frequency electromagnetic radiation to which it would be transparent is _____ $\times 10^{16}$ Hz. (up to two decimal places).
- Q52. Using Hund's rule, the total angualr momentum quantum number *J* for the electronic ground state of the nitrogen atom is
 - (a) 1/2
- (b) 3/2
- (c) 0

- (d) 1
- Q53. Consider a 2-dimensional electron gas with a density of 10^{19} m⁻². The Fermi energy of the system is ____eV (Up to two decimal places).

$$(m_e = 9.31 \times 10^{-31} \text{ kg}, h = 6.626 \times 10^{-34} \text{ Js}, e = 1.602 \times 10^{-19} \text{ C})$$

Q54. Which one of the following operators is Hermitian?

(a)
$$i \frac{(p_x x^2 - x^2 p_x)}{2}$$
 (b) $i \frac{(p_x x^2 + x^2 p_x)}{2}$ (c) $e^{ip_x a}$

Positronium is an atom made of an electron and a positron. Given the Bohr radius for the ground state of the Hydrogen atom to be 0.53 Angstroms, the Bohr radius for the ground state of positronium is Angstroms. (Up to two decimal places.)

SECTION A SECTION A 10. OF THE OF T 4. F. OPTIMIST CLASSES THE OPTIMIST. (d) OPTIMIST CLASE 8. IST CLASSES THE OPTIMIST OF SES (b) (c), (c), (c), (d), (d), (e) SECTION - B 2. (14.10 to 14.20) 3. 6. (c) 10. 14. THE OF TH 6. 12. THE OF (C) (d) 16. (d) (S (8.80 to 8.90) **(b)** (d) OPTIMI (a) (3.13 to 3.15) _16. 17. (41.60 to 42.00) 18. 19. (1.30 to 1.34) **20.** (a) 22. 21. (c) 23. (2.50 to 2.55) 24. (0.27 to 0.31) (d) 26. (1.72 to 1.75) 27. 28. 31. **32.** > (0.32 to 0.36)30. (0.90 to 1.10) (9.80 to 10.20) The printer of the contract of (d) 33. 35. 36. 34. (4.75 to 5.01) (a) (c) 38. 39. 37. (0.10 to 0.12) **40.** (d) (c) 42. (87.50 to 89.50) 43. (0.15 to 0.19) 44. 46. (3.30 to 3.35) 45. 47. (b) 48. 52, MIS THE OPTIMIST CLASSES THE OPTIMIST CLASSES THE OPTIMIST CLASSES 51. 49. (29.50 to 30.10) 50. (0.51 to 0.53) (2.35 to 2.45) THE OPTIMIST THE OPTIMIST CLASSES THE OPTIMIST CLASSES (2.31 to 2.40) 54. THE OPTIMIST CLASSES THE OPTIMIST TIMIST CLASSES THE OPTIMIST CLASSES TIME OPTIMIST CLASSES THE OPTIMIST CLASSES THE OPTIMIST CLASSES CLASSES THE OPTIMIST CLASSES THE OPTIMIST CLASSES THE OPTIMIST CLASSES

THE OPTIMIST CLASSES THE OPTIMIST CLASSES

THE OPTIMIST CLASSES THE OPTIMIST CLASSES