OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHIT AGGARWAL

SHIKHAR CHAMOLI

SWAPNILJOSHI

LOKESH BHATT

VAIBHAV

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

CSIR-NET-JRF RESUI

ANNUO DL01000308

UP15000162

SAHIL RANA

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

SURYA PRATAP SINGH RJ06000232

HIMANSHU UP10000095

CHANDAN RJ09000159

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

SHYAM SUNDAR

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

E OPTIMIST CLASSES

CONTACT: 9871044043

CSIR-UGC-NET/JRF-Dec.-2013 PREVIOUS YEAR QUESTION

PHYSICAL SCIENCES

A horizontal metal disc rotates about the vertical axis in a uniform magnetic field pointing up as shown in the figure. A circuit is made by connecting one end A of a resistor to the centre of the disc and the other end B to its edge through a sliding contact S. The current that flows through the resistor is

- (b) DC from A to B (c) DC from B to A (d) AC is in the state ~ -1 (1+i) (a) zero $\frac{1}{2}$ particle is in the state $\chi = \frac{1}{\sqrt{11}} {1+i \choose 3}$ in the eigenbasis of S^2 and S_z If we measure S_z the

probabilities of getting $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$, respectively, are

(a) $\frac{1}{2}$ and $\frac{1}{2}$ (b) $\frac{2}{11}$ and $\frac{9}{11}$ (c) 0 and 1 (d) $\frac{1}{11}$ and $\frac{3}{11}$

- 23. Which of the following functions cannot be the real part of a complex analytic function of z = x + iy?
 - (a) x^2y
- (b) $x^2 y^2$
- (c) $x^3 3xy^2$ (d) $3x^2y y y^3$
- The motion of a particle of mass m in one dimension is described by the Hamiltonian

 $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 + \lambda x$. What is the difference between the (quantized) energies of the first two

levels? (In the following, $\langle x \rangle$ is the expectation value of x in the ground state)

- (b) $\hbar\omega + \lambda \langle x \rangle$ (c) $\hbar\omega + \frac{\lambda^2}{2m\omega^2}$
- Let $\psi_{n\ell m}$ denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential V(r). The

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

 $\psi = \frac{1}{6} \left[\psi_{200} + \sqrt{5} \psi_{210} + \sqrt{10} \psi_{21-1} + \sqrt{20} \psi_{211} \right] \text{ is}$ (a) $-\frac{5}{18} \hbar$ (b) $\frac{5}{6} \hbar$ (c) $\frac{5}{6} \hbar$ expectation value of L_z in the state $\psi = \frac{1}{6} \left[\psi_{200} + \sqrt{5} \psi_{210} + \sqrt{10} \psi_{21-1} + \sqrt{20} \psi_{211} \right] \text{ is}$ (a) $-\frac{5}{18} \hbar$ (b) $\frac{5}{6} \hbar$ (c) \hbar (d) $\frac{5}{18} \hbar$ Three identical spin $-\frac{1}{2}$ fermions are to be distributed in two non-degenerate distinct energy levels. The number of ways this can be done is

The number of ways this can be done is

Let A, B and C be functions of phase space variables (cooridnates and momenta of a mechanical system). If

{,} represents the Poisson bracket, the value of {A (B C)} ((A B) = 7) $\label{eq:continuous} \mbox{\{,\} represents the Poisson bracket, the value of } \mbox{\{A, \{B,C\}\}} - \mbox{\{\{A,B\},C\} is given by } \mbox{\ } \mbox$

(b) $\{B, \{C, A\}\}$

(c) $\{A, \{C, B\}\}\$ (d) $\{\{C, A\}, B\}\$

If A, B and C are non-zero Hermitian operators, which of the following relations must be false?

The expression is

DA = C $+ \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} + \frac{\partial^2}{\partial x_4^2} + \frac{\partial^2}{\partial x_4^2} = 0$ $= \frac{1}{(x_1^2 + x_2^2 + x_3^2 + x_4^2)}$ $= \frac{1}{(x_1^2 + x_2^2 + x_3^2 + x_4^2)}$ proportional to $x_1 + x_2 + x_3 + x_4$ $+ x^2 + x_3^2 + x_4$

(c) $(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-3/2}$ (d) $(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-2}$ Given that the integral $\int_0^\infty \frac{dx}{y^2 + x^2} = \frac{\pi}{2y}$, the value of $\int_0^\infty \frac{dx}{(y^2 + x^2)^2}$ is

(a) $\frac{\pi}{y^3}$ (b) $\frac{\pi}{4y^3}$ (c) $\frac{\pi}{8y^3}$ (d) $\frac{\pi}{2}$ The force between two long and parallel wires carroling proportional to $\int_0^\infty \frac{dx}{(y^2 + x^2)^2} dx$ (d) 2y3 and I. store of Action 1911. The force between two long and parallel wires carrying currents I_1 and I_2 separated by a distance D is proportional to

(a) I_1I_2/D (b) $(I_1+I_2)/D$ (c) $(I_1I_2/D)^2$ is proportional to

(a) I_1I_2/D (b) $(I_1+I_2)/D$ (c) $(I_1I_2/D)^2$ (d) I_1I_2/D^2 A loaded dice has the probabilities $\frac{1}{21}, \frac{2}{21}, \frac{3}{21}, \frac{4}{21}, \frac{5}{21}$ and $\frac{6}{21}$ of turinging up 1, 2, 3, 4, 5 and 6, respectively. If it is thrown twice, what is probability that the sum of the numbers that turn up is even?

(a) $\frac{144}{441}$ (b) $\frac{225}{441}$ (c) $\frac{221}{441}$ (d) $\frac{220}{441}$ 33. A particle moves in a potential $V = x^2 + y^2 + \frac{z^2}{2}$. Which component (s) of the angular momentum is $V = x^2 + y^2 + \frac{z^2}{2}$. are constant (s) of motion?

(b) L_x, L_y and L_z (c) only L_x and L_y

(d) only L

The Hamiltonian of a relativistic particle of rest mass m and momentum p is given by

 $H = \sqrt{p^2 + m^2} + V(x)$, in units in which the speed of light c = 1. The corresponding Lagrangian is

(a)
$$L = m\sqrt{1 + \dot{x}^2} - V(x)$$

(b)
$$L = -m\sqrt{1 + \dot{x}^2} - V(x)$$

(c)
$$L = \sqrt{1 + m\dot{x}^2} - V(x)$$

(d)
$$L = \frac{1}{2}m\dot{x}^2 - V(x)$$

A ring of mass m and radius R rolls (without slipping) down an inclined plane starting from rest. If the centre of the ring is initially at a height h, the angular velocity when the ring reaches the base is

(a)
$$\sqrt{g/(h-R)} \tan \theta$$

(b)
$$\sqrt{g/(h-R)}$$

(c)
$$\sqrt{g/(h-R)/R^2}$$

$$(d)\sqrt{2g/(h-R)}$$

36. Consider the op-amp circuit shown in the figure.

If the input is a sinusoidal wave $V_i = 5 \sin(1000t)$, then the amplitude of the output V_0 is

(a)
$$\frac{5}{2}$$

(c)
$$\frac{5\sqrt{2}}{2}$$

(d)
$$5\sqrt{2}$$

- 37. If one of the inputs of a *J-K* flop is high and the other is low, then the outputs Q and \overline{Q}
 - (a) oscillate between low and high in race-around condition
 - (b) toggle and the circuit acts like a T flip flop
 - (c) are opposite to the inputs
 - (d) follow the inputs and the circuit acts like an R-S flip flop
- Two monochromatic sources, L_1 , and L_2 , emit light at 600 and 700 nm, respectively. If their frequency bandwidths are 10^{-1} and 10^{-3} GHz, respectively, then the ratio of linewidth of L_1 and L_2 is approximately (a) 100:1 (b) 1:85 (c) 75:1 (d) 1:75
 - 39. Let (V, A) and (V', A') denote two sets of scalar and vector potentials, and ψ a scalar function. Which of the following transformations leave the electric and magnetic fields (and hence Maxwell's equations) unchanged?

(a)
$$A' = A + \nabla \psi$$
 and $V = V - \frac{\partial \psi}{\partial t}$

(b)
$$A' = A - \nabla \psi$$
 and $V' = V + 2 \frac{\partial \psi}{\partial t}$

- (c) $A' = A + \nabla \psi$ and $V' = V + \frac{\partial \psi}{\partial x}$
- Consider the melting transition of ice into water at constant pressure. Which of the following thermodynamic quantities does not exhibit a discontinuous change across the phase transition?
 - (a) internal energy

(b) Helmholtz free energy

(c) Gibbs free energy

- (d) entropy
- Two different thermodynamic systems are described by the following equations of state:

$$\frac{1}{T^{(1)}} = \frac{3RN^{(1)}}{2U^{(1)}}$$
 and $\frac{1}{T^{(2)}} = \frac{5RN^{(2)}}{2U^{(2)}}$ where $T^{(1,2)}, N^{(1,2)}$ and $U^{(1,2)}$ are respectively, the temperatures,

the mole numbers and the internal energies of the two systems, and R is the gas constant. Let U_{tot} denote

the total energy when these two systems are put in contact and attain thermal equilibrium. The ratio $\frac{U^{(3)}}{U_{loc}}$ is

- (a) $\frac{5N^{(2)}}{3N^{(1)} + 5N^{(2)}}$ (b) $\frac{3N^{(1)}}{3N^{(1)} + 5N^{(2)}}$ (c) $\frac{N^{(1)}}{N^{(1)} + N^{(2)}}$ (d) $\frac{N^{(2)}}{N^{(1)} + N^{(2)}}$

- The speeed v of the molecules of mass m of an ideal gas obeys Maxwell's velocity distribution law at an equilibrium temperature T. Let (v_x, v_y, v_z) denote the components of the velocity and k_B the Boltzmann constant. The average value of $(\alpha v_x - \beta v_y)^2$, where α and β are constants, is
 - (a) $(\alpha^2 \beta^2)k_BT/m$ (b) $(\alpha^2 + \beta^2)k_BT/m$ (c) $(\alpha + \beta)^2k_BT/m$ (d) $(\alpha \beta)^2k_BT/m$
- The entropy S of a thermodynamic system as a function of energy E is given by the following graph

The temperatures of the phase A, B and C, denoted by T_A, T_B and T_C, respectively, satisfy the following inequalities:

- (a) $T_C > T_B > T_A$
- (b) $T_A > T_C > T_B$ (c) $T_B > T_C > T_A$
- (d) $T_{B} > T_{A} > T_{C}$
- The physical phenomenon that cannot be used for memory storage applications is

 - (b) variation in magnetization of a ferroelectric as a function of applied magnetic field
 (c) variation in polarization of a ferroelectric as a function of applied magnetic field

 - (d) variation in resistance of a metal as a function of applied electric field
- Two identical Zener diodes are placed back to back in series and are connected to a variable DC power supply. The best representation of the I-V characteristics of the circuit is

Part -C

A pendulum consista of a ring of mass M and radius R suspended by a massless rigid rod of length l at tached to its rim. When the pendulum oscillates in the plane of the ring, the time period of oscillation is

(a)
$$2\pi\sqrt{\frac{1+R}{g}}$$

(b)
$$\frac{2\pi}{\sqrt{g}} (l^2 + R^2)^{1/4}$$

(c)
$$2\pi \sqrt{\frac{2R^2 + 2Rl + l^2}{g(R+1)}}$$

(d)
$$\frac{2\pi}{\sqrt{g}} (2R^2 + 2Rl + l^2)^{1/4}$$

- Spherical particles of a given material of density p are released from rest inside a liquid medium of lower density. The viscous drag force may be approximately by the stroke's law, i.e. $F_d = 6\pi \eta Rv$ where η is the viscosity of the medium, R the radius of a particle and v its instantaneous velocity. If $\tau(m)$ is the time taken by a particle of mass m to reach half its terminal velocity, then the ratio $\tau(8m)/\tau(m)$ is
- A system of N classical non-interacting particles, each of mass m, is at a temperature T and is confined by the external potential $V(r) = \frac{1}{2}Ar^2$ (where A is a constant) in three dimensions. The internal energy of the system is

the system is

(a)
$$3Nk_BT$$

(b) $\frac{3}{2}Nk_BT$

(c) $N(2mA)^{3/2}k_BT$

(d) $N\sqrt{\frac{A}{m}}\ln\left(\frac{k_BT}{m}\right)$

Consider a particle of mass m attached to two identical springs each of length l and spring constant k (see the figure below). The equilibrium configuration is the one where the springs are unstretched. There are no other external forces on the system. If the particle is given a small displacement along the x-axis, which of the following describes the equation of motion for small oscillations?

(a)
$$m\ddot{x} + \frac{kx^3}{l^2} = 0$$

(b)
$$m\ddot{x} + kx = 0$$

(c)
$$m\ddot{x} + 2kx = 0$$

$$(d) m\ddot{x} + \frac{kx^2}{l} = 0$$

50. If $\psi(x) = A \exp(-x^4)$ is the eigenfunction of a one dimensional Hamiltonian with eigenvalue E = 0, the

TIMIS CLASS SES FILEOF TIMIS CLASS SES TO TEOP TIMIS STATE OF THE OF THE OPPORTU
potential $V(x)$ (in units where $\hbar = 2m = 1$) is
potential $V(x)$ (in units where $\hbar = 2m = 1$) is (a) $12x^2$ (b) $16x^6$ (c) $16x^6 + 12x^2$ (d) $16x^6 - 12x^2$ 51. The electric field of an electromagnetic wave is given by $\vec{E} = E_0 \cos\left[\pi(0.3x + 0.4y - 1000t)\right]\hat{k}$. The
51. The electric field of an electromagnetic wave is given by $\vec{E} = E_0 \cos \left[\pi \left(0.3x + 0.4y - 1000t \right) \right] \hat{k}$. The
associated magnetic field \vec{B} is
(a) $10^{-3}E_0\cos\left[\pi\left(0.3x+0.4y-1000t\right)\right]\hat{k}$
(a) $12x^2$ (b) $16x^6$ (c) $16x^6 + 12x^2$ (d) $16x^6 - 12x^2$ 51. The electric field of an electromagnetic wave is given by $\vec{E} = E_0 \cos\left[\pi(0.3x + 0.4y - 1000t)\right]\hat{k}$. The associated magnetic field \vec{B} is (a) $10^{-3}E_0 \cos\left[\pi(0.3x + 0.4y - 1000t)\right]\hat{k}$ (b) $10^{-4}E_0 \cos\left[\pi(0.3x + 0.4y - 1000t)\right](4\hat{i} - 3\hat{j})$ (c) $E_0 \cos\left[\pi(0.3x + 0.4y - 1000t)\right](0.3\hat{i} + 0.4\hat{j})$ (d) $10^2E_0 \cos\left[\pi(0.3x + 0.4y - 1000t)\right](3\hat{i} - 4\hat{j})$ 52. The energy of an electron in a band as a function of its wave vector k is given by $E(k) = E_0 - B(\cos k_x a + \cos k_y a + \cos k_z a)$ where E_0 , B and a are constants. The effective mass of the electron near the bottom of the band is (a) $\frac{2\hbar^2}{3Ba^2}$ (b) $\frac{\hbar^2}{3Ba^2}$ (c) $\frac{\hbar^2}{2Ba^2}$ (d) $\frac{\hbar^2}{Ba^2}$ 53. A DC voltage V is applied across a Josephson junction between two superconductors with a phase
(c) $E_0 \cos \left[\pi \left(0.3x + 0.4y - 1000t\right)\right] \left(0.3\hat{i} + 0.4\hat{j}\right)$
(d) $10^2 E_0 \cos \left[\pi \left(0.3x + 0.4y - 1000t\right)\right] \left(3\hat{i} - 4\hat{j}\right)$
52. The energy of an electron in a band as a function of its wave vector k is given by
$E(k) = E_0 - B(\cos k_x a + \cos k_y a + \cos k_z a)$ where E_0 , B and a are constants. The effective mass of
the electron near the bottom of the band is
$E(k) = E_0 - B(\cos k_x a + \cos k_y a + \cos k_z a) \text{ where } E_0, B \text{ and } a \text{ are constants. The effective mass of the electron near the bottom of the band is}$ (a) $\frac{2\hbar^2}{3Ba^2}$ (b) $\frac{\hbar^2}{3Ba^2}$ (c) $\frac{\hbar^2}{2Ba^2}$ (d) $\frac{\hbar^2}{Ba^2}$ 53. A DC voltage V is applied across a Josephson junction between two superconductors with a phase
53. A DC voltage V is applied across a Josephson junction between two superconductors with a phase
difference difference difference approximate that demands on the monorties of the investions the exament
flowing through it has the form $(2eVt)$ $(2eVt)$
difference ϕ_0 . If I_0 and k are constants that depends on the properties of the junctions, the current flowing through it has the form (a) $I_0 \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$ (b) $kV \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$ (c) $kV \sin \phi_0$ (d) $I_0 \sin \phi_0 + kV$ 54. Consider the following ratios of the partial decay widths $R_1 = \frac{\Gamma(\rho^+ \to \pi^+ + \pi^0)}{\Gamma(\rho^- \to \pi^- + \pi^0)}$ and $\Gamma(\Delta^{++} \to \pi^+ + p)$
$(c) kV \sin \phi = (1/k) \int_{0}^{\infty} \int_{0}$
Primite of Cliff See 10 THE OF THE OF SEE THE OF TH
54. Consider the following ratios of the partial decay widths $R_1 = \frac{\Gamma(\rho \to \pi^- + \pi^-)}{\Gamma(\rho^- \to \pi^- + \pi^0)}$ and
THE OF TH
flowing through it has the form (a) $I_0 \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$ (b) $kV \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$ (c) $kV \sin \phi_0$ (d) $I_0 \sin \phi_0 + kV$ 54. Consider the following ratios of the partial decay widths $R_1 = \frac{\Gamma(\rho^+ \to \pi^+ + \pi^0)}{\Gamma(\rho^- \to \pi^- + \pi^0)}$ and $R_2 = \frac{\Gamma(\Lambda^+ \to \pi^+ + \rho)}{\Gamma(\Lambda^- \to \pi^- + \eta)}$. If the effects of electromagnetic and weak interactions are neglected, then R_1 and R_2 are, respectively, (a) 1 and $\sqrt{2}$ (b) 1 and 2 (c) 2 and 1 (d) 1 and 1 55. The intrinsic electric dipole moment of a nucleus $\frac{\ell}{2}X$ (a) increases with Z , but independent of A (b) decreases with Z , but independent of A (c) is always zero (d) increases with Z and A 56. According to the shell model, the total angular momentum (in units of \hbar) and the parity of the ground state of the $\frac{7}{3}$ Li nucleus is (a) $\frac{3}{7}$ with negative parity (b) $\frac{3}{7}$ with positive parity
R_1 and R_2 are, respectively,
 (a) 1 and √2 (b) 1 and 2 (c) 2 and 1 (d) 1 and 1 55. The intrinsic electric dipole moment of a nucleus ^A₂X (a) increases with Z, but independent of A (b) decreases with Z, but independent of A (c) is always zero (d) increases with Z and A 56. According to the shell model, the total angular momentum (in units of ħ) and the parity of the ground state of the ⁷₃Li nucleus is (a) ³/₂ with negative parity (b) ³/₂ with positive parity
55. The intrinsic electric dipole moment of a nucleus ${}_{z}^{A}X$
(a) increases with Z, but independent of A (b) decreases with Z, but independent of A
(c) is always zero (d) increases with Z and A 56. According to the shell model, the total angular momentum (in units of ħ) and the parity of the ground
(c) is always zero (d) increases with Z and A 56. According to the shell model, the total angular momentum (in units of ħ) and the parity of the ground state of the $\frac{7}{3}$ Li nucleus is
PI MIST CLASSI THE OPTIME OF THE OPTIME OF THE OPTIME
(c) is always zero (d) increases with Z and A 56. According to the shell model, the total angular momentum (in units of \hbar) and the parity of the ground state of the $\frac{7}{3}$ Li nucleus is (a) $\frac{3}{2}$ with negative parity (b) $\frac{3}{2}$ with positive parity
 55. The intrinsic electric dipole moment of a nucleus ½ X (a) increases with Z, but independent of A (b) decreases with Z, but independent of A (c) is always zero (d) increases with Z and A 56. According to the shell model, the total angular momentum (in units of ħ) and the parity of the ground state of the ½ Li nucleus is (a) 3/2 with negative parity (b) 3/2 with positive parity (c) 1/2 with positive parity (d) 7/2 with negative parity
The opin (6) 2 starpostate pairs of the opinion of

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092 CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

A point charge q is placed symmetrically at a distance d from two perpendicularly placed grounded conducting infinite plates as shown in the figure. The net force on the charge (in units of $1/4\pi \in 0$) is

- $\frac{q^2}{8d^2} (2\sqrt{2} 1)$ away from the corner
- (b) $\frac{q^2}{8d^2} (2\sqrt{2} 1)$ towards the corner

(c) $\frac{q^2}{2\sqrt{2}d^2}$ towards the corner

- (d) $\frac{3q^2}{8d^2}$ away from the corner
- Let four point charges q, -q/2, q and -q/2 be placed at the vertices of a square of side a. Let another point charge -q be placed at the centre of the square (see the figure).

- Let V(r) be the electrostatic potential at a point P at a distance r>>a from the centre of the square. Then

- (a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{8}$ Let A and B be two vectors in three-dimensional Euclidean space. Under rotation, the tensor product
 - (a) reduces to a direct sum of three 3-dimensional representations
 (b) is an irreducible 0 dimensional
 - (b) is an irreducible 9-dimensiional representation
 - (c) reduces to a direct sum of a 1-dimensional, a 3-dimensional and a 5-dimesional irreducible repre-
 - (d) reduces to a direct sum of a 1-dimensional and an 8-dimensional irreducible representation
- Fourier transform of the derivative of the Dirac δ function, namely $\delta'(x)$, is proportional to

- A particle is in the ground state of an infinite square well potential given by,

$$V(x) = \begin{cases} 0 & \text{for } -a \le x \le a \\ \infty & \text{otherwise} \end{cases}$$

The probability to find the particle in the interval between $-\frac{a}{2}$ and $\frac{a}{2}$ is

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{2} + \frac{1}{\pi}$ (c) $\frac{1}{2} - \frac{1}{\pi}$ (d) $\frac{1}{\pi}$

62. The expectation value of the *x*-component of the orbital angular momentum L_x in the state
$$\psi = \frac{1}{5} \left[3\psi_{2,1,1} + \sqrt{5}\psi_{2,1,0} - \sqrt{11}\psi_{2,1,+1} \right] \text{ (where } \psi_{n\ell m} \text{ are the eigenfunctions in usual notation), is}$$

63. A particle is prepared in a simultaneous eigenstate of L^2 and L_z . If $l(l+1)\hbar^2$ and $m\hbar$ are respectively the eigenvalues of L^2 and L_z then the expectation value $\langle L_x^2 \rangle$ of the particle in this state satisfies

(c) $\frac{\hbar\sqrt{10}}{25} \left(\sqrt{11} + 3\right)$ (d) $\hbar\sqrt{2}$

- (c) $0 \le \langle L_x^2 \rangle \le \frac{l(l+1)\hbar^2}{3}$ (d) $\frac{l\hbar^2}{2} \le \langle L_x^2 \rangle \le \frac{l(l+1)\hbar^2}{2}$
- 64. If the electrostatic potential $V(r,\theta,\phi)$ in a charge free region has the form $V(r,\theta,\phi) = f(r)\cos\theta$, then the functional form of f(r) (in the following a and b are constants) is
 - (a) $ar^2 + \frac{b}{r}$ (b) $ar + \frac{b}{r^2}$ (c) $ar + \frac{b}{r}$ (d) $a \ln \left(\frac{r}{b}\right)$
- 65. If $\vec{A} = \hat{i}yz + \hat{j}xz + \hat{k}xy$ then the integral $\oint_C \vec{A} \cdot d\vec{l}$ (where C is along the perimeter of a rectangular area bounded by x = 0, x = a and y = 0, y = b) is
 - (a) $\frac{1}{2}(a^3+b^3)$ (b) $\pi(ab^2+a^2b)$ (c) $\pi(a^3+b^3)$ (d) 0
- 66. Consider an $n \times n(n > 1)$ matrix A, in which A_{ij} is the product of the indices i and j (namely $A_{ij} = ij$). The matrix A
 - (a) has one degenerate eigenvalues with degeneracy (n-1)
 - (b) has two degenerate eigenvalues with degeneracies 2 and (n-2)
 - (c) has one degenerate eigenvalues with degeneracy n
 - (d) does not have any degenerate eigenvalue
- A child make a random walk on a square lattice of lattice constant a taking a step in the north, east, south, or west directions with probabilities 0.255, 0.255, 0.245, and 0.245, respectively. After a large number of steps, N, the expected position of the child with respect to the starting point is at a distance
 - (a) $\sqrt{2} \times 10^{-2} Na$ in the north-east direction (b) $\sqrt{2N} \times 10^{-2} a$ in the north-east direction (c) $2\sqrt{2} \times 10^{-2} Na$ in the south-east direction (d) 0
- 68. A carnot cycle operates as a heat engine between two bodies of equal heat capacity until their temperatures become equal. If the initial temperatures of the bodies are T_1 and T_2 , respectively, and $T_1 > T_2$ then their common final temperature is

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

- (d) $\frac{1}{2}(T_1 + T_2)$
- Three sets of data A, B and C from an experiment, represented by \times , \square and \bigcirc , are plotted on a loglog scale. Each of these are fitted with straight lines as shown in the figure.

The functional dependence y(x) for the sets A, B and C are, respectively

- (a) \sqrt{x} , x and x^2
- (b) $-\frac{x}{2}$, x and 2x
- $s(c) \frac{1}{x^2}$, x and x^2 (d) $\frac{1}{\sqrt{x}}$, x and x^2
- A sample of Si has electron and hole mobilities of 0.13 and 0.05 m²/V-s respectively at 300K. It is doped with P and Al with doping densities of 1.5×10^{21} / m³ and 2.5×10^{21} / m³ respectively. The conductivity of the doped Si sample at 300 K is
 - (a) $8\Omega^{-1}m^{-1}$
- (b) $32\Omega^{-1}m^{-1}$
- (c) $20.8\Omega^{-1}m^{-1}$ (d) $83.2\Omega^{-1}m^{-1}$
- A 4-variable switching function is given by $f = \Sigma(5,7,8,10,13,15) + d(0,1,2)$, where d is the donot-care condition. The minimized form of f in sum of products (SOP) form is
 - (a) $\overline{A}\overline{C} + \overline{B}\overline{D}$
- (b) $A\overline{B} + C\overline{D}$
 - (c) AD + BC
- (d) $\overline{B}\overline{D} + BD$
- A perturbation $V_{pert} = a L^2$ is added to the Hydrogen atom potential. The shift in the energy level of the 2P state, when the effects of spin are neglected up to second order in a, is

- (d) $a\hbar^2 + \frac{3}{2}a^2\hbar$
- A gas laser cavity has been designed to operate at $\lambda = 0.5 \mu$ m with a cavity length of 1m. With this set-up, the frequency is found to be larger than the desired frequency by 100 Hz. The change in the effective length of the cavity required to retune the laser is
 - (a) -0.334×10^{-12} m

(b) 0.334×10^{-12} m

(c) 0.167×10^{-12} m

- (d) -0.167×10^{-12} m
- The spectroscopic symbol for the ground state of $_{13}$ Al is $^2P_{1/2}$. Under the action of a strong magnetic field (when L-S coupling can be neglected) the ground state energy level will split into
- (a) 3 levels
- (b) 4 levels
- (c) 5 levels
- (d) 6 levels
- A uniform linear monoatomic chain is modeled by a spring-mass system of masses m separated by neares neighbour distance a and spring constant $m\omega_0^2$. The dispersion relation for this system is

- (c) $\omega(k) = 2\omega_0 \sin(k)$
- (d) $\omega(k) = 2\omega_0 \tan\left(\frac{ka}{2}\right)$

233, FIRST FLOOR, LAXMI NAGAR DELH

TIMIS ANSWER KEY

TIMIS.	CLAD	TIS	TEOF CITY	MS, CLAS	5	TE OF	MSI	JASS	12	COPI
ANSWER KEY 21. (c) 22. (b) 23. (a) 24. (d) 25. (d) 26. (d) 27. (d) 28. (a) 29. (b) 30. (b) 31. (a) 32. (b) 33. (d) 34. (b) 35. (c) 36. (c) 37. (d) 38. (c) 39. (a) 40. (c) 41. (b) 42. (b) 43. (c) 44. (d) 45. (c) 46. (c) 47. (c) 48. (a) 49. (a) 50. (d) 51. (b) 52. (d) 53. (a) 54. (d) 55. (c) 55. (a) 57. (b) 58. (d) 59. (c) 60. (d) 61. (b) 62. (a) 63. (d) 64. (b) 65. (d) 66. (a) 67. (a) 68. (c) 69. (d) 70. (a) 71. (d) 72. (e) P73. (d) 74. (d) 75. (c)										
The EOPTE	1 (6)	22 (b)	= 23. G	24.	(d) ASSET	25 (d)	OP 26. (d)	KSICL	27 (d)	THE
7111 228	8. (a)	29. (b)	30. (b	31.	(a) se	32. (b)	33. (d) el	34. (b)	is TH
35ES THE 35	5. (c) (h)	36. (c)	37. (d	38.	(c) (d)	39. (a)	40. (c)	TIMIL	41.(b)	SES
SES 42	2. (b) 0 (a)	43. (c) 50 (d)	44. (a 51. (b) 45. 525	(c) (d)	46. (c)	47. (c) 54 (d)) TIM	48. (a)	AS
JA 56	5. (a)	57. (b)	58.(d	i) 59.	(c) (mis)	60. (d)	5 61. (b)	KOR,	62. (a)	LASS
63	3. (d)	64. (b)	65. (d)) 66.	(a) MIS	67. (a)	68. (c)) OP	69. (d)	TAS.
SES THE OPTIMIST CLASSES). (a)\\\ ^\$	71. (a)	72. (c	P/3	3. (d)	74. (d)	5575. (c)) Lin	OPTIL	MST CY
MSTURASS	E C	'HI OPTI	- MST C	ASSE	THE OPT	in istor	ASSET	TH	e OPTI	Mr 15TC
TIM USICE	ASSEL	THE	PTIM IST C	LI ASSES	THE	PIM	Chi	SES	THE	PIMI
OPTIME IST CL	SSE	THE	PIMI	at Clir SSF	is THE	PIMI	TOLK	cSES	THE	of IMI.
E PIIM.	CLA	CSES TY	JE OF TIME	of CLA.	SES	THE OF	MISTO	LAU	ES	HE OF
THE OF DEIMIL	CLA	SES	THEO!	TIME TOL	AS	THEOR	TIMIS	CLAS	, F.S.	WE OF
THEO	MIS'	CLASE SES	THEOR	TMISI	CLASI OF	3 WE	DE I	51	ASS	TY TE
TE TEOR	TMIST	CLAST	as af	OP'I	LASS	\S	TOP1	MST	T ASSI	STh
5 TV	JP1.	JIST JAS	St. St.	OPTI	MST	SSE T	HIL OP	Lille.	Cr	SEE
ASSET THE	OPTI	MST C.	ASSE	THE OPTH	N IST CY	ASSER	THE	PIII.	1ST CV	SSES
EOPTIMESTOLASSES THEOPTIMESTOLASSES	THE OP	FIM. IST	SES THEORY JAASSES THE JAASSES THE JAASSES THE OPTIMIST CLASSES THE OPTIMIST THE OPTIMIST THE OPTIMIST THEOPTIMIST THEOPTIMIST	THE	PIME	CLI SSE	THI	PI	MIL	ILA SSF
JICL SSES	THE	PIM	at Chr. SSF	ES THE	PIIM	TOLK	SES	THE	TIMIL	TOLA
at Our SSE	is TH	if O PIIM	of CLA	astis	HEO. OTH	IIS CLA	SES	THE	Or TIM	is, cri
MISTOLA	SES	THEO	TIME TOL	AST CES	THE OF	TIMIS!	LAS	as I	TEOY .	TMIST
TIME, CLA	JES CES	THEOR	TIME	CLAST	S TEO	MIST	CLAST	45	TE OP	MIST
OP I TIMIS'I	CLASS	a\$ af	OP'I	LASS	S	OPI	IST OF	ASSI		OPTH
TE OPT TMIST	J.AS.	of the	OPTI	MSTU, TA	35th of	OPTH	MST O	ASSI	TH	PIL
THE OPTIM	15TO	ASSE	THE OPTH	MST OF	ASSES	THE	TIME	I Ch	SSES	THE
THE OPTIM	(STC)	ASSET	THE	PINA 151	July SSES	THE	PIM	CT CL	SES	THE
S THE	FIME	TOLK SS	is THE	PIMA	of CLA.	SES TH	ê ori	MIS	CLA	ES T
SSES THE	DIMI	of CLA.	SES T	HEO, OTIM	is, cry	SES	THE OI	TIMIS	CLAD	CES ,
SES TH	EOI	MIS TOL	AST	THEON	TIME!	LAS	THE	OP,	IIST C	ASS,
CLAST CES	THOY	MISI	TAST TE	5 TEOP	TMIST	JASS.	4S	T, OP'	MST	TASSI
CLASS.	T	OP'I MIS'	VASS	25 77	OPIL	STU ASS	32.	THE	Pill.	STO A
MST CLASSIC	'E THE	OPTH	MST C. AS	SEE TH	OPTIM	15TC	ASSER	THE	OPTIM	ISTOL
"ISTO" AS	,5E2 ~	THE OPTIM	IST CL	SSED	THE OPT	in all	LI SSE	S TH	IEC PT	MIL
RIMI	SSES	THE	PIMIL	July SES	THE	OTIMAL	CLA	SES	THE	TIME
MIL	LA	5), WID	J.A.	5 ×	Or	D'	,D-	Y .	O, L

MET CLASSES THE OPTIMET CLASSES THE PRIMET CLASSES

AFTERFERENCE CLASSES THEOFIRES CLASSES THEOFIRES