OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHIT AGGARWAL

SHIKHAR CHAMOLI

SWAPNILJOSHI

LOKESH BHATT

VAIBHAV

CSIR-NET-JRF RESUI

ANNUO DL01000308

UP15000162

SAHIL RANA

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

SURYA PRATAP SINGH RJ06000232

HIMANSHU UP10000095

CHANDAN RJ09000159

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

SHYAM SUNDAR

THE OPTIMIST CLASSES

AN INSTITUTE FOR NET-JRF/GATE/IIT-JAM/JEST/TIFR/M.Sc ENTRANCE EXAMS

CONTACT: 9871044043

(d) 0.28%

CSIR-UGC-NET/JRF-JUNE-2014 PREVIOUS YEAR QUESTION

PHYSICAL SCIENCES

One gram of salt is dissolved in water that is filled to a height of 5cm in a beaker of diameter 10 cm. The accuracy of length measurement is 0.01 cm while that of mass measurement is 0.01 mg. When

Part - B

measuring the concentration C, the fractional error $\Delta C/C$ is

(b) 0.14% (c) 0.5%

22.	A system can have three energy levels:
45	$E = 0, \pm_{\varepsilon}$. The level $E = 0$, is doubley degenerate, while the others are non-degenerate. The average
SV	energy at inverse temperature is
SE	energy at inverse temperature is $(a) -\varepsilon \tanh(\beta \varepsilon) \qquad (b) \frac{\varepsilon \left(e^{\beta \varepsilon} - e^{-\beta \varepsilon}\right)}{\left(1 + e^{\beta \varepsilon} + e^{-\beta \varepsilon}\right)} \qquad (c) \text{ zero} \qquad (d) -\varepsilon \tanh\left(\frac{\beta \varepsilon}{2}\right)$
LAS	(a) $-\varepsilon \tanh(\beta \varepsilon)$ (b) $\frac{\varepsilon(e^{\beta \varepsilon} - e^{-\beta \varepsilon})}{(1 + e^{\beta \varepsilon} + e^{-\beta \varepsilon})}$ (c) zero (d) $-\varepsilon \tanh(\frac{\beta \varepsilon}{2})$
	energy at inverse temperature is (a) $-\varepsilon \tanh(\beta \varepsilon)$ (b) $\frac{\varepsilon(e^{\beta \varepsilon} - e^{-\beta \varepsilon})}{(1 + e^{\beta \varepsilon} + e^{-\beta \varepsilon})}$ (c) zero (d) $-\varepsilon \tanh(\frac{\beta \varepsilon}{2})$ For a particular thermodynamics system the entropy S is related to the internal energy U and volume V by
23.	For a particular thermodynamics system the entropy 5 is related to the internal energy 6 and volume v by
50	G 173/477/4
MSI	
LIM	where c is a constant. The Gibbs potential $G = U + TS = pV$ for this system is (a) $\frac{3pU}{4T}$ (b) $\frac{cU}{3}$ (c) zero (d) $\frac{US}{4V}$ An op-amp based voltage follower (a) is useful for converting a low impedance source into a high impedance source
TIM	(a) $\frac{3pU}{4T}$ (b) $\frac{cU}{3}$ (c) zero (d) $\frac{US}{4V}$
OP	1 3 OF THE STONE SSTORES
24.	An op-amp based voltage follower
TIEO	(a) is useful for converting a low impedance source into a high impedance source
Liv	(b) is useful for converting a high impedance source into a low impedance source
	(c) has infinitely high closed loop output impedance
35	(d) has infinitely high closed loop gain
25.	(a) $\frac{3pU}{4T}$ (b) $\frac{cU}{3}$ (c) zero (d) $\frac{US}{4V}$ An op-amp based voltage follower (a) is useful for converting a low impedance source into a high impedance source (b) is useful for converting a high impedance source into a low impedance source (c) has infinitely high closed loop output impedance (d) has infinitely high closed loop gain A particle of mass m in three dimensions is in the potential
SES	THE TIME CLAS (0.57 < a THE TIME CLASS TES THE
AS	$V(r) = \{S^{(r)}, r \geq a\}$
S	Str THE PETER STORMS SERVER THE PETERS STEEL THE POTTER
Chr	Its ground state energy is
, <u>, , , , , , , , , , , , , , , , , , </u>	$\pi^2\hbar^2$ $3\pi^2\hbar^2$ $9\pi^2\hbar^2$
ist,	(a) $\frac{1}{2ma^2}$ (b) $\frac{1}{ma^2}$ (c) $\frac{1}{2ma^2}$ (d) $\frac{1}{2ma^2}$
Wir.	An op-amp based voltage follower (a) is useful for converting a low impedance source into a high impedance source (b) is useful for converting a high impedance source into a low impedance source (c) has infinitely high closed loop output impedance (d) has infinitely high closed loop gain A particle of mass m in three dimensions is in the potential $V(r) = \begin{cases} 0 & r < a \\ \infty & r \ge a \end{cases}$ Its ground state energy is (a) $\frac{\pi^2 \hbar^2}{2ma^2}$ (b) $\frac{\pi^2 \hbar^2}{ma^2}$ (c) $\frac{3\pi^2 \hbar^2}{2ma^2}$ (d) $\frac{9\pi^2 \hbar^2}{2ma^2}$ Which of the graph below gives the correct qualitative behavior of the energy density $E_{\pi}(\lambda)$ of
26 ∡≧	Which of the graph below gives the correct qualifative behavior of the energy density $h = (A, A)$ of V

blackbody radiation of wavelength λ at two temperatutes T_1 and T_2 $(T_1 < T_2)$?

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092
CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

THE OPTIMIST CLASSES

THE OPTIMIST CLAS

 $= -i\hbar \left(\frac{\partial}{\partial r} + \frac{1}{r}\right), \text{ the uncertainty } \Delta p_r \text{ in the ground state}$ Jund
SSES
THE OPTIMIST CLASSES of the hydrogen atom is $\psi_0(r) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$ $(a) \frac{\hbar}{a_0}$

$$\psi_0(r) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$$

(a)
$$\frac{\hbar}{a_0}$$

(b)
$$\frac{\sqrt{2}\hbar}{a_0}$$

(c)
$$\frac{\hbar}{2a_0}$$

(d)
$$\frac{2\hbar}{a_0}$$

 $\sqrt{\pi}a_0^{\frac{1}{3}}e^{-r/a_0}$ broduces a r'An RC network produces a phase-shift of 30°. How many such RC networks should be cascaded together and connected to a Common Emitter amplifier so that the final circuit behaves as $\frac{1}{2}$ (b) 12 (c) 9 (d) 29. The free energy F of a system depends on a thermodynamics variable ψ as $F = -\alpha \psi^2 + b \psi^6$ with a, b > 0. The value of and connected to a Common Emitter amplifier so that the final circuit behaves as an oscillator?

$$F = -\alpha \psi^2 + b \psi^6$$

(b)
$$\pm (a/6b)^{1/2}$$

(c)
$$\pm (a/3b)^{1/4}$$

(d)
$$+(a/b)^{1/4}$$

with a, b > 0. The value of ψ , when the system is in thermodynamic equilibrium, is

(a) zero

(b) $\pm (a/6b)^{1/4}$ (c) $\pm (a/3b)^{1/4}$ 30. The inner shield of a(d) $\pm (a/b)^{1/4}$ Collower circ The inner shield of a triaxial conductor is driven by an (ideal) op-amp follower circuit as shown. The effective capacitance between the signal-carrying conductor and ground: THE OPTIMIST. capacitance between the signal-carrying conductor and ground is

- (a) unaffected
 Consider Consider a system of two non-interacting identical fermions, each of mass *m* in an infinite square well potential of width *a*. (Take the potential inside the well to be zero and ignore spin). The composite wavefunction for the system with total energy.

$$E = \frac{5\pi^2 \hbar^2}{2ma^2}$$
 is

(a)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{2\pi x_2}{a} \right) - \sin \left(\frac{2\pi x_1}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

(b)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{2\pi x_2}{a} \right) + \sin \left(\frac{2\pi x_1}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

(c)
$$\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{3\pi x_2}{2a} \right) - \sin \left(\frac{3\pi x_1}{2a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$$

(c)
$$\frac{1}{a} \left[\sin \left(\frac{1}{a} \right) \sin \left(\frac{1}{2a} \right) - \sin \left(\frac{1}{2a} \right) \sin \left(\frac{1}{a} \right) \right]$$

(d) $\frac{2}{a} \left[\sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) - \sin \left(\frac{\pi x_1}{a} \right) \sin \left(\frac{\pi x_2}{a} \right) \right]$
32. A particle of mass m in the potential $V(x, y) = \frac{1}{2} m\omega^2$

A particle of mass m in the potential $V(x,y) = \frac{1}{2}m\omega^2(4x^2 + y^2)$, is in an eigenstate of energy E =The corresponding un-normalized eigenfunction is

(a)
$$y \exp \left[-\frac{m\omega}{2\hbar} \left(2x^2 + y^2 \right) \right]$$

(b)
$$x \exp\left[-\frac{m\omega}{2\hbar}(2x^2+y^2)\right]$$

(c)
$$y \exp \left[-\frac{m\omega}{2\hbar} \left(x^2 + y^2 \right) \right]$$

(c)
$$y \exp\left[-\frac{m\omega}{2\hbar}(x^2+y^2)\right]$$
 (d) $xy \exp\left[-\frac{m\omega}{2\hbar}(x^2+y^2)\right]$
A particle of mass m and coordinate q has the Lagrangian

$$L = \frac{1}{2}m\dot{q}^2 - \frac{\lambda}{2}q\dot{q}^2$$

where λ is a constant. The Hamiltonian for the system is given by

(a)
$$\frac{p^2}{2m} + \frac{\lambda q p^2}{2m^2}$$

(b)
$$\frac{p^2}{2(m-\lambda q)}$$

for the system is given by
$$(c) \frac{p^2}{2m} + \frac{\lambda q p^2}{2(m - \lambda q)^2} \quad (d) \frac{pq}{2}$$
of unit radius in the plane defined by $z = 1$, with

- If $\vec{A} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and C is the circle of unit radius in the plane defined by z = 1, with the centre on the z-axis, then the value of the integral $\oint_C \widehat{A.dl}$ is

- (a) $\frac{\pi}{2}$ (b) π (c) $\frac{\pi}{4}$ (d)

 Given $\sum_{n=0}^{\infty} P_n(x) t^n = (1-2xt+t^2)^{-1/2}$, for |t| < 1, the value of $P_5(-1)$ is
 - (a) 0.26

- (d) -1
- A charged particle is at a distance d from an infinite conducting plane maintained at zero potential. When released from rest, the particle reaches a speed u at a distance d/2 from the plane. At what distance from the plane will the particle reach the speed 2u?

Consider the matrix

$$M = \begin{pmatrix} 0 & 2i & 3i \\ -2i & 0 & 6i \\ -3i & -6i & 0 \end{pmatrix}$$

The eigenvalues of M are

hr (c) -4i,2i,2i Consider the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0$ with the initial conditions x(0) = 0 and $\dot{x}(0) = 1$. The

solution x(t) attains its maximum value when 't' is

- (b) 1

A light source is switched on and off at a constant frequency f. An observe moving with a velocity u with respect to the light source will observe the frequency of the switching to be

- (b) $f\left(1 \frac{u^2}{c^2}\right)^{-1/2}$ (c) $f\left(1 \frac{u^2}{c^2}\right)$ (d) $f\left(1 \frac{u^2}{c^2}\right)^{1/2}$

If C is the contour defined by $|z| = \frac{1}{2}$, the value of the integral $\oint_C \frac{dz}{\sin^2 z}$ is

The time period of a simple pendulum under the influence of the acceleration due to gravity g is T. The bob is subjected to an additional acceleration of magnitude $\sqrt{3}g$ in the horizontal direction. Assuming small oscillations, the mean position and time period of oscillation, respectively, of the bob

(a) 0° to the vertical and $\sqrt{37}$

(b) 30° to the vertical and T/2

(c) 60° to the vertical and $T/\sqrt{2}$

(d) 0° to the vertical and $T/\sqrt{3}$

Consider an electromagnetic wave at the interface between two homogeneuous dielectric media of the dielectric constants ε_1 and ε_2 . Assuming $\varepsilon_2 > \varepsilon_1$ and non charges on the surface, the electric field vector \vec{E} and the displacement vector in the two media satisfy the following inequalities

- (a) $\left| \vec{E}_2 \right| > \left| \vec{E}_1 \right|$ and $\left| \vec{D}_2 \right| > \left| \vec{D}_1 \right|$
- (b) $\left| \vec{E}_2 \right| < \left| \vec{E}_1 \right|$ and $\left| \vec{D}_2 \right| < \left| \vec{D}_1 \right|$
- (c) $\left| \vec{E}_2 \right| < \left| \vec{E}_1 \right|$ and $\left| \vec{D}_2 \right| > \left| \vec{D}_1 \right|$
- (d) $\left| \vec{E}_2 \right| > \left| \vec{E}_1 \right|$ and $\left| \vec{D}_2 \right| < \left| \vec{D}_1 \right|$

43. If the electrostatic potential in spherical polar coordinates is

$$\varphi(r) = \varphi_0 e^{-r/r_0}$$

where φ_0 and r_0 are constants, then the charge density at a distance will be

A current i_p flows through the primary coil of a transformer. The graph of $i_p(t)$ as a function of time shown in figure below

which of the following graph represents the current i_s in the secondary coil?

45. A time-dependent current $\vec{I}(t) = Kt\hat{z}$ (where K is a constant) is switched on at t = 0 in an infinite current-carrying wire. The magnetic vector potential at a perpendicular distance 'a' from the wire is given (for time t > a/c) by

(a)
$$\hat{z} \frac{\mu_0}{4\pi c} \int_{-\sqrt{c^2 t^2 - a^2}}^{\sqrt{c^2 t^2 - a^2}} dz \frac{ct - \sqrt{a^2 + z^2}}{\left(a^2 + z^2\right)^{1/2}}$$

(b)
$$\hat{z} \frac{\mu_0 K}{4\pi} \int_{-ct}^{ct} dz \frac{t}{\left(a^2 + z^2\right)^{1/2}}$$

(c)
$$\hat{z} \frac{\mu_0}{4\pi c} \int_{-ct}^{ct} dz \frac{ct - \sqrt{a^2 + z^2}}{\left(a^2 + z^2\right)^{1/2}}$$

(d)
$$\hat{z} \frac{\mu_0}{4\pi c} \int_{-\sqrt{c^2 t^2 - a^2}}^{\sqrt{c^2 t^2 - a^2}} dz \frac{t}{\left(a^2 + z^2\right)^{1/2}}$$

Part-C

The pressure of a non-relativistic free Fermi gas in three-dimensions depends, at T = 0, on the density of fermions n as

(a)
$$n^{5/3}$$

(b)
$$n^{1/3}$$

(c)
$$n^{2/3}$$

(d)
$$n^{4/3}$$

47. A doubel slit interference experiment uses a laser emitting light of two adjacent frequencies v_1 and v_2 ($v_1 < v_2$). The minimum path difference between the interfering beams for which the interference pattern disappears is

(a)
$$\frac{c}{v_2 + v_1}$$

(b)
$$\frac{c}{v_2 - v_1}$$

$$\text{(c)} \frac{c}{2(v_2 - v_1)}$$

$$(d) \frac{c}{2(v_2 + v_1)}$$

48. The recently-discovered Higgs boson at the LHC experiment has a decay mode into a photon and a Z boson. If the rest masses of the Higgs and Z bosons are 125GeV/c² and 90 GeV/c² respectively, and the decaying Higgs particle is at rest, the energy of the photon will approximately be

- (a) $35\sqrt{3}$ GeV
- (b) 35 GeV
- (c) 30 GeV
- (d) 15 GeV

49. A permanently deformed even-even nucleus with $J^P = 2^+$ has rotational energy 93keV. The energy of the next excited state is

- (a) 372 keV
- (b) 310 keV
- (c) 273 keV
- (d) 186 keV

50. How much does the total angular momentum quantum number J change in the transition of Cr(3d⁶) atom as it ionizes to Cr²⁺(3d⁴)?

- (a) increased by 2
- (b) decreases by 2
- (c) decreases by 4
- (d) does not change

For the logic circuit shown in the figure below

- A spectral line due to a transition from an electronic state p to an s state splits into three Zeeman lines in the presence of a strong magnetic field. At intermediate field strengths the number of spectral lines:

 (a) 10 presence of a strong magnetic field. At intermediate field strengths the number of spectral lines is

 (a) 10 (b) 3 (c) 6 (d) 9

$$V(x) = \begin{cases} 0 & 0 < x < a \\ \infty & \text{otherwise} \end{cases}$$

(a) 10 (b) 3 (c) 6

53. A particle in the infinite square well

$$V(x) = \begin{cases} 0 & 0 < x < a \\ \infty & \text{otherwise} \end{cases}$$
is prepared in a state with the wavefunction

$$\psi(x) = \begin{cases} A\sin^3\left(\frac{\pi x}{a}\right) & 0 < x < a \\ \infty & \text{otherwise} \end{cases}$$

- otherwise

 a) $\frac{2h^2\pi^2}{2ma^2}$ (b) $\frac{9h^2\pi^2}{2ma^2}$ (c) $\frac{9h^2\pi^2}{10ma^2}$ (d) $\frac{h^2\pi^2}{2ma^2}$ The average local internal magnetic field acting on an Ising spin is $H_{\rm inf} = \alpha M$, where M is the magnetization and α is a positive constant. At a temperature T sufficiently close to (and above) the critical temperature T he magnetic susceptibility at zero external field is proportional to $(k_B$ is the Boltzmann constant $(k_B)^2 = (k_B)^2 =$ The expectation value of the energy of the particle is

 (a) $\frac{5\hbar^2\pi^2}{2ma^2}$ (b) $\frac{9\hbar^2\pi^2}{2ma^2}$ (c) $\frac{9\hbar^2}{2ma^2}$ The average local internal magnitude of the magni

Consider an electron in a b.c.c. lattice with lattice constant a. A single particle wavefunction that satisfies the $\left[\frac{a}{a}(x-y+z)\right] + \cos\left[\frac{2\pi}{a}(z+x)\right]$ $\left[\frac{\pi}{a}(x+y)\right] + \cos\left[\frac{\pi}{a}(y+z)\right] + \cos\left[\frac{\pi}{a}(z+x)\right]$ (d) $1 + \cos\left[\frac{\pi}{a}(x+y-z)\right] + \cos\left[\frac{\pi}{a}(-x+y+z)\right] + \cos\left[\frac{\pi}{a}(x-y+z)\right]$ The dispersion relation for electrons in an f.c.c. crystal is given, in the tient $\frac{\pi}{a}(x-y+z)$ here 'a' is the lattice constant.

(a)
$$1 + \cos\left[\frac{2\pi}{a}(x+y-z)\right] + \cos\left[\frac{2\pi}{a}(-x+y+z)\right] + \cos\left[\frac{2\pi}{a}(x-y+z)\right]$$

(b)
$$1 + \cos\left[\frac{2\pi}{a}(x+y)\right] + \cos\left[\frac{2\pi}{a}(y+z)\right] + \cos\left[\frac{2\pi}{a}(z+x)\right]$$

(c)
$$1 + \cos \left[\frac{\pi}{a} (x+y) \right] + \cos \left[\frac{\pi}{a} (y+z) \right] + \cos \left[\frac{\pi}{a} (z+x) \right]$$

(d)
$$1 + \cos\left[\frac{\pi}{a}(x+y-z)\right] + \cos\left[\frac{\pi}{a}(-x+y+z)\right] + \cos\left[\frac{\pi}{a}(x-y+z)\right]$$

57. The dispersion relation for electrons in an f.c.c. crystal is given, in the tight binding approximation by

$$\varepsilon(k) = -4\varepsilon_0 \left[\cos \frac{k_x a}{2} \cos \frac{k_y a}{2} + \cos \frac{k_y a}{2} \cos \frac{k_z a}{2} + \cos \frac{k_z a}{2} \cos \frac{k_x a}{2} \right]$$

where 'a' is the lattice constant and ε_0 is a constant with the dimension of energy. The x-component of the velocity of the electrons at $\left(\frac{\pi}{a},0,0\right)$ is $(a) -\frac{2\varepsilon_0 a}{2\varepsilon_0 a} \qquad (b) 2\varepsilon_0 a \qquad (e) 2\varepsilon_0 a \qquad$

(a)
$$-\frac{2\varepsilon_0 a}{\hbar}$$

(b)
$$\frac{2\varepsilon_0 a}{\hbar}$$

(c)
$$-\frac{4\varepsilon_0 a}{\hbar}$$

(d)
$$\frac{4\varepsilon_0 a}{\hbar}$$

velocity of the electrons at $\left(\frac{a}{a},0,0\right)$ is $(a) -\frac{2\varepsilon_0 a}{\hbar} \qquad (b) \frac{2\varepsilon_0 a}{\hbar} \qquad (c) -\frac{4\varepsilon_0 a}{\hbar} \qquad (d) \frac{4\varepsilon_0 a}{\hbar}$ The following data is obtained in an experiment that measures the viscosity η as a function of molecular weight M for a set of polymers. M for a set of polymers.

lymers.
$$\eta(Da)$$
 $\eta(kPa-s)$ 990 0.28 ± 0.03 5032 30 ± 2 10191 250 ± 10 19825 2000 ± 200

The relations that best describes the dependence of η on M is

(a) $\eta \sim M^{4/9}$ (b) - $M^{3/2}$

(a)
$$\eta \sim M^{4/9}$$

(b)
$$\eta \sim M^{3/2}$$

(c)
$$\eta \sim M^2$$

(d)
$$\eta \sim M^3$$

(d) $\hat{\eta} \sim M^3$ 59. The integral $\int_0^1 \sqrt{x} dx$ is to be evaluated up to 3 decimal places using Simpson's 3-point rule. If the interval [0,1] is divided into 4 equal parts, the correct result is

(a) 0.683

(b) 0.667

(c) 0.657

(d) 0.638

In a classical model, a scalar (spin-0) meson consists of a quark and an antiquark bound by a potential

$$V(r) = ar + \frac{b}{r}$$

where $a = 200 \, MeV \, fm^{-1}$ and $b = 100 \, MeV \, fm$. If the masses of the quark and antiquark are negligible, the mass of the meson can be estimated as approximately (c) 353 MeV/c² (d) 425 MeV/

(b) $283 \,\text{MeV}/\,\text{c}^2$

- Let $y = \frac{1}{2}(x_1 + x_2)$, where x_1 and x_2 are independent and identically distributed Gaussian random varigraph of a real periodic function f(x) for the range $[-\infty, \infty]$ is shown below ables of mean μ and standard deviation σ . Then $\frac{\langle y^4 \rangle}{\sigma^4}$

The matrices
$$A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
satisfy the commutation relations

- (a) [A,B] = B + C, [B,C] = 0, [C,A] = B + C (b) [A,B] = C, [B,C] = A, [C,A] = B(c) [A,B] = B, [B,C] = 0, [C,A] = A (d) [A,B] = C, [B,C] = 0, [C,A] = B64. The function $\Phi(x,y,z,t) = \cos(z-vt) + \text{Re}(\sin(x+iy))$ satisfies the equation

- $(a) \frac{1}{v^2} \frac{\partial^2 \Phi}{\partial t^2} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \Phi$ $(b) \left(\frac{1}{v^2} \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \Phi$ $(c) \left(\frac{1}{v^2} \frac{\partial^2}{\partial t^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(d) \left(\frac{\partial^2}{\partial z^2} \frac{1}{v^2} \frac{\partial^2}{\partial t^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(e) \left(\frac{1}{v^2} \frac{\partial^2}{\partial t^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(f) \left(\frac{\partial^2}{\partial z^2} \frac{1}{v^2} \frac{\partial^2}{\partial t^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi = \left(\frac{\partial^2}{\partial z^2} \frac{\partial^2}{\partial z^2}\right) \Phi$ $(g) \left(\frac{\partial^2}{\partial z^2$ The coordinates and momenta x_i, p_i (i = 1, 2, 3) of a particle satisty the canonical Poisson bracket relations $\{x_i, p_i\} = \delta_{ij}$. If $C_1 = x_2 p_3 + x_3 p_2$ and $C_2 = x_1 p_2 + x_2 p_1$ are constants of motion. and if $C_3 = \{C_1, C_2\} = x_1 p_3 + x_3 p_1$, then

TIMIS CLASS CES THEOR TIMIST CLASS TES THOP TIMIST CLASS 11 TO
(a) $\{C_2, C_3\} = C_1$ and $\{C_3, C_1\} = C_2$ (b) $\{C_2, C_3\} = -C_1$ and $\{C_3, C_1\} = -C_2$ (c) $\{C_2, C_3\} = -C_1$ and $\{C_3, C_1\} = C_2$ (d) $\{C_2, C_3\} = C_1$ and $\{C_3, C_1\} = -C_2$
(c) $\{C_2, C_3\} = -C_1$ and $\{C_3, C_1\} = C_2$ (d) $\{C_2, C_3\} = C_1$ and $\{C_3, C_1\} = -C_2$
66. A canonical transformation relates the old coordinates (q, p) to the new ones (Q, P) by the relations Q
$= q^2$ and $P = p/2q$. The corresponding time-independent generating function is
(a) $\frac{P}{q^2}$ (b) q^2P (c) q^2/P (d) qP^2
67. The time evolution of a one-dimensional dynamical systems is described by
$\frac{dx}{dt} = -(x+1)(x^2-b^2)$ THE OPTIMES TO THE OPTIME OF THE OPTIMES TO THE OPTIME OF THE OPTIMES TO THE OPTIME OPTIMES.
If this has one stable and two unstable fixed points, then parameter 'b' satisfies (a) $0 < b < 1$ (b) $b > 1$ (c) $b < -1$ (d) $b = 2$
EC PRIMIL STOLE SSES THE OF TIMES TOLEN SESSION THEORY TOLENS SSES THE
68. A charge (-e) is placed in vacuum at the point (d, 0, 0), where d > 0. The region $x \le 0$ is filled unformly with a metal. The electric field at the point $\left(\frac{d}{2}, 0, 0\right)$ is (a) $-\frac{10e}{9\pi\varepsilon_0 d^2}(1,0,0)$ (b) $\frac{10e}{9\pi\varepsilon_0 d^2}(1,0,0)$ (c) $\frac{e}{\pi\varepsilon_0 d^2}(1,0,0)$ (d) $-\frac{e}{\pi\varepsilon_0 d^2}(1,0,0)$ 69. An electron is in the ground state of a hydrogen atom. The probability that it is within the Bohr radius is approximately equal to
(a) $-\frac{10e}{(1.0.0)}$ (b) $\frac{10e}{(1.0.0)}$ (c) $\frac{e}{(1.0.0)}$ (d) $-\frac{e}{(1.0.0)}$
$9\pi\varepsilon_0 d^2 \stackrel{\text{(1,0,0)}}{}{} 9\pi\varepsilon_0 d^2 \stackrel{\text{(1,0,0)}}{}{} \pi\varepsilon_0 d^2 \text{(1,0$
is approximately equal to
(a) 0.60 (b) 0.90 (c) 0.16 (d) 0.32
70. A beam of light of frequency ω is reflected from a dielectric-metal interface at normal incidence. The refractive
index of the dielectric medium is n and that of the metal is $n_2 = n(1+i\rho)$. If the beam is polarised parallel to
the interface, then the phase change experienced by the light upon reflection is
(a) $\tan\left(\frac{2}{\rho}\right)$ (b) $\tan^{-1}\left(\frac{1}{\rho}\right)$ (c) $\tan^{-1}\left(\frac{2}{\rho}\right)$ (d) $\tan^{-1}(2\rho)$ 71. The scattering amplitude $f(\theta)$ for the potential $V(r) = \beta e^{-\mu r}$, where β and μ are positive constants, is given, in the Born approximation by (in the following and $b = 2k \sin\frac{\theta}{2}$ and $E = \frac{\hbar^2 k^2}{2m}$) (a) $-\frac{4m\beta\mu}{\hbar^2(b^2 + \mu^2)^2}$ (b) $-\frac{4m\beta\mu}{\hbar^2b^2(b^2 + \mu^2)}$ (c) $-\frac{4m\beta\mu}{\hbar^2\sqrt{b^2 + \mu^2}}$ (d) $-\frac{4m\beta\mu}{\hbar^2(b^2 + \mu^2)^3}$ 72. The ground state eigenfunction for the potential $V(x) = -\delta(x)$, where $\delta(x)$ is the delta functions, is given by $\psi(x) = Ae^{-a x }$, where A and $\alpha > 0$ are constants. If a perturbation $H' = bx^2$ is applied, the first order correction to the energy of the ground state will be
71. The scattering amplitude $f(\theta)$ for the potential $V(r) = \beta e^{-\mu r}$, where β and μ are positive con-
stants, is given, in the Born approximation by
(in the following and $b = 2k \sin \frac{\theta}{2}$ and $E = \frac{\hbar^2 k^2}{2}$)
5 THE COUNTY OF CLASS SEES THE OF THE
(a) $-\frac{4m\beta\mu}{h^2h^2(h^2+\mu^2)}$ (b) $-\frac{4m\beta\mu}{h^2h^2(h^2+\mu^2)}$ (c) $-\frac{4m\beta\mu}{h^2h^2(h^2+\mu^2)}$ (d) $-\frac{4m\beta\mu}{h^2(h^2+\mu^2)^3}$
$h^{2}\left(b^{2}+\mu^{2}\right) \qquad h^{3}\left(b^{3}+\mu^{2}\right) \qquad h^{2}\left(b^{2}+\mu^{2}\right) \qquad h^{3}\left(b^{3}+\mu^{2}\right)$
72. The ground state eigenfunction for the potential $V(x) = -\delta(x)$, where $\delta(x)$ is the delta functions, is
given by $\psi(x) = Ae^{-\alpha x }$, where A and $\alpha > 0$ are constants. If a perturbation $H' = bx^2$ is applied, the
first order correction to the energy of the ground state will be
72. The ground state eigenfunction for the potential $V(x) = -\delta(x)$, where $\delta(x)$ is the delta functions, is given by $\psi(x) = Ae^{-\alpha x }$, where A and $\alpha > 0$ are constants. If a perturbation $H' = bx^2$ is applied, the first order correction to the energy of the ground state will be (a) $\frac{b}{\sqrt{2}\alpha^2}$ (b) $\frac{b}{\alpha^2}$ (c) $\frac{2b}{\alpha^2}$ (d) $\frac{b}{2\alpha^2}$ 73. A thin infinitely long solenoid placed along the z-axis contains a magnetic flux ϕ . Which of the following vector potentials corresponds to the magnetic field at an arbitrary point (x, y, z) ?
73. A thin infinitely long solenoid placed along the z-axis contains a magnetic flux ϕ . Which of the fol-
lowing vector potentials corresponds to the magnetic field at an arbitrary point (x, y, z) ?
233, FIRST FLOOR, LAXMI NAGAR DELHI-110092 CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com
CALL(W, U/U/1UTTUT) - W W W.LHCUPHHISULIASSCS.CUIII-LHIAH. HHU(W/HCUPHHIISULIASSCS.CUIII

(a)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{y}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{x}{x^2 + y^2}, 0\right)$$

(a)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{y}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{x}{x^2 + y^2}, 0\right)$$

(b) $(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{y}{x^2 + y^2 + z^2}, \frac{\phi}{2\pi} \frac{x}{x^2 + y^2 + z^2}, 0\right)$
(c) $(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{x + y}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{x + y}{x^2 + y^2}, 0\right)$
(d) $(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{x}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{y}{x^2 + y^2}, 0\right)$
74. The van der Waals equation of state for a gas is given by
$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$
where, P, V and T represent the pressure, volume and temperature respectively, and a and b are

(c)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{x+y}{x^2+y^2}, \frac{\phi}{2\pi} \frac{x+y}{x^2+y^2}, 0\right)$$

(d)
$$(A_x, A_y, A_z) = \left(-\frac{\phi}{2\pi} \frac{x}{x^2 + y^2}, \frac{\phi}{2\pi} \frac{y}{x^2 + y^2}, 0\right)$$

$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$

 $x + y^{2} \cdot \frac{y}{2\pi} \frac{x + y}{x^{2} + y^{2}}, 0$ $(A_{x}, A_{y}, A_{z}) = \left(\frac{\phi}{2\pi} \frac{x}{x^{2} + y^{2}}, \frac{\phi}{2\pi} \frac{y}{x^{2} + y^{2}}, 0\right)$ 74. The van der Waals equation of state for a gas is given by $\left(p + \frac{a}{V^{2}}\right)(V - b) = RT$ where, P, V and T represent the pressure constant parameters. At the criminated, the volume is given: $(a) \frac{a}{\sigma}$

- where, P, V and T represent the pressure, volume and temperature respectively, and a and b are constant parameters. At the critical point, where all the roots of the above cubic equation are dependent, the volume is given by

 (a) $\frac{a}{9b}$ (b) $\frac{a}{27b^2}$ (c) $\frac{8a}{27bR}$ (c) $\frac{8a}{27bR}$ (c) $\frac{a}{27bR}$ (c) $\frac{a}{27bR}$ is the conductive is the conductive $\frac{a}{27bR}$ is the conduct 75. An electromagnetically-shielded room is designed so that as a frequency $\omega = 10^7$ rad/s the intensity of the external radiation that penerates the room is 1% of the incident radiation. If $\sigma = \frac{1}{2\pi} \times 10^6 (\Omega m)^{-1}$ is the conductivity of the shielding material, its minimum thickness should be (given that 2.3)

 (a) 4.60 mm

 (b) 2.20 is the conductivity of the shielding material, its minimum thickness should be (given that the In 10 = 2.3)
 (a) 4.60 mm
 (b) 2.30 mm
 (c) 0.23 mm
 (d) 0.46 mm

 ANSWER KEY

	, X	A	NSWER KEY	~~~~	21 25		
21. (d) 28. (a) 35. (d) 42. (c) 49. (b) 56. (b)	, S	23.(c) 30 (d)	24. (b) 515	25. (a)	26. (c)	55× 7×	THE OP IN
21. (d)	22. (d)	23. (c)	24. (b) 31. (a) 38. (b)	25. (a) 32. (a) 39. (d) 46. (a)	26. (c)	27. (a)	THE
28. (a)	29. (c)	30. (d)	31. (a)	32. (a)	33. (b)	34. (d)	C
35. (d)	36. (d)	37. (b)	38. (b)	39. (d)	40. (c)	41. (c)	THE
42. (c)	43. (a) 50. (c)	44.(c)	24. (b) 31. (a) 38. (b) 45. (a) 52. (a)	46. (a)	V - 1 - 1 - X	48. (c)	ES (
49. (b)	50. (c)	51. (d)	52. (a)		(A).	<i>y</i>	C
42. (c) 49. (b) 56. (b) 63. (d)	57. (d)	23. (c) 30. (d) 37. (b) 44. (c) 51. (d) 58. (d) 65. (d)	38. (b) 45. (a) 52. (a) 59. (c) 66. (b) 73. (a)	60. (b)	40. (c) 47. (c) 54. (c) 61. (b) 68. (b) 75. (b)	62. (b)	ASSES
63. (d)	64. (a)	65. (d)	66. (b)	67. (c)	68. (b)	69. (d)	ik ch
49. (b) 56. (b) 63. (d) 70. (c)	71. (a)	72. (d)	73. (a)	74. (d)	75. (b)	MEI	ASS
6 77	64. (a) 71. (a)	ASSI	45. (a) 52. (a) 59. (c) 66. (b) 73. (a)	60. (b) 67. (c) 74. (d)	Sh. Thi	55. (a) 62. (b) 69. (d)	J. C.
SES THEO	PIMI	TOLASSES MISTOLASSES OPTIMISTOLASS	THE	DALL OF THE OF THE	SES TH	E CIMIL	CLA
LASSES TI	TEO' TIME	DPTIMIST CLASS	ES TEON	MISI	LASE	TE OF	MSI
(ASS)	OPI	MST AS		OPIL IST	ASSIL	THE OPT	il CI
SER	THE DY	Mr. Cr.	CSES THE	TIMI	TOLE SES	THE	TIMIL
JASSIS TO ASSES TO STOLASSES	, TIEO	TIMIS CI	LAS	TEON THE	SICLASE	65 (B)	OF M
ST ASSI		OPTI MST	ASSI	Up. OBLI	ist s	SEL THE	PLIL
CT Chr c	SES THE	DIM	Cli ests	THE	CIMIT CLEAN	SES	HE
MIS CLA	T.S	TEO! COM!	CLAST	S TEOK	MISI	AS	COP OF
TIMIST CLASS	LASSES T	IMSTO CLASS	TOLASSES THE		68. (b) 75. (b) 75. (b) 75. (c) 75. (c) 75. (c) 75. (d) 75. (d) 75. (d)	ASSES	THE
	233, F	IRST FLOOF	R, LAXMI NA	GAR DELHI	l-110092		