OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHIT AGGARWAL

SHIKHAR CHAMOLI

GAURAV JHA

SWAPNILJOSHI

LOKESH BHATT

CSIR-NET-JRF RESUI

ANNUO DL01000308

UP15000162

SAHIL RANA

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

SURYA PRATAP SINGH RJ06000232

HIMANSHU UP10000095

CHANDAN RJ09000159

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

SHYAM SUNDAR

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

THEORY

HE OFTIMES! AN INSTITUTE FOR NET-JRF/GATE/IIT-JAM/JEST/TIFR/M.Sc ENTRANCE EXAMS

CONTACT: 9871044043

CSIR-UGC-NET/JRF-DEC 2018 PREVIOUS YEAP PREVIOUS YEAR QUESTION Assignment 1: PHYOR

THE OPTIME	One of the eigenvalue	es of the matrix A is a	a^a where $A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$	a. The product of the other two (d) 1 of the Legendre polynomials			
	Chr.	THE OPTIME	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a) the product of the other two springs of the			
AS	eigenvalues of e^{A} is	S COP	MST ASS	C TI OPT ISTO ASSI			
SSP T	(a) e^{2a}	(b) e^{-a}	(c) e^{-2a}	Stid) 1 THE OPTIME UST CLE ASSES			
CLAS 22.	The polynomial $f(x)$	$= 1 + 5x + 3x^2$ is written	as linear combination o	f the Legendre polynomials			
MST CLASS	$(P_0(x)=1, P_1(x)=x, P_2)$	$(x) = \frac{1}{2}(3x^2 - 1)$ as $f($	$(x) = \sum_{n} c_{n} P_{n}(x) . Th$	(d) 1 If the Legendre polynomials e value of c_0 is (d) 4 us $\frac{\pi}{2}$, traversed counter-clockwise, (d) 0 Imping force $-\gamma v^2$, where γ is a he speed at time t is			
PIMISTE	$\frac{1}{4} = \frac{1}{4}$	(b) $\frac{1}{2}$ HST CLASSI	(c) 2 THE OPTIME	M(d) 4			
1E OPTIM	The value of the integ	$\frac{dz}{z} \frac{\tanh 2z}{\sin \pi z}$ where	ere C is a circle of radi	us $\frac{\pi}{2}$, traversed counter-clockwise,			
THE OF .	with centre at $z = 0$, is (a) 4	S: THE OP I DETINIST	CTCLASS! TI	THE OPTER STIMIST CLASSIC SES THE			
THE	(a) 4	(b) 4i (H) (P)	(c) 2i (LA) 55ES	(d) O Primis STOLAS SSES T			
5ES 24.7E	A particle of mass m, n	noving along the x -direc	ction, experiences a dan	nping force $-\gamma v^2$, where γ is a			
ASSES	The value of the integral $\oint \frac{dz}{z} \frac{\tanh 2z}{\sin \pi z}$ where C is a circle of radius $\frac{\pi}{2}$, traversed counter-clockwise, with centre at $z=0$, is: (a) 4 (b) $4i$ (c) $2i$ (d) 0 A particle of mass m , moving along the x -direction, experiences a damping force $-\gamma v^2$, where γ is a cosntant and v is its instantaneous speed. If the speed at $t=0$ is v_0 , the speed at time t is (a) $v_0 e^{\frac{\gamma v_0 t}{m}}$ (b) $\frac{v_0}{1+\ln\left(1+\frac{\gamma v_0 t}{m}\right)}$ (c) $\frac{mv_0}{m+\gamma v_0 t}$ (d) $\frac{2v_0}{1+e^{\frac{\gamma v_0 t}{m}}}$						
LAN SES	(a) $v_0 e^{\frac{\gamma v_0 t}{m}}$	(b) $\frac{v_0}{1 + \ln\left(1 + \frac{\gamma v_0 t}{m}\right)}$	(c) $\frac{mv_0}{m + \gamma v_0 t}$	imping force $-\gamma v^2$, where γ is a he speed at time t is $(d) \frac{2v_0}{1+e^{\frac{\gamma v_0 t}{m}}}$			
CA	CES THE	The Color III	THE TIME	CLE TES TES			

- 25. The integral $I = \int e^{2} dz$ is evaluated from the point (-1,0) to (1,0) along the contour C, which is an arc of the parabola $y = x^{2} 1$ as shown in the figure. The value of I is

In terms of arbitrary constants A and B, the general solution to the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + 5x \frac{dy}{dx} + 3y = 0$$
 is

(a)
$$y = \frac{A}{x} + Bx^3$$
 (b) $y = Ax + \frac{B}{x^3}$

(b)
$$y = Ax + \frac{B}{x^3}$$

(c)
$$y = Ax + Bx^3$$

(d)
$$y = \frac{A}{x} + \frac{B}{x^3}$$

In a attractive Kepler problem described by the central potential $V(r) = \frac{-k}{r}$ (where k is a positive

constant), a particle of mass m with a non-zero angular momentum can never reach the centre due to the centrifugal barrier. If we modify the potential to

$$V(r) = -\frac{k}{r} - \frac{\beta}{r^3}$$

one finds that there is a critical value of thangular momentum l_c below which there is no centrifugal barrier This value of l_{ℓ} is

(a)
$$\left[12 \, km^2 \beta\right]^{1/2}$$

(b)
$$\left[12km^{2}\beta\right]^{-1/2}$$
 (c) $\left[12km^{2}\beta\right]^{1/4}$

(c)
$$\left[12km^2\beta\right]^1$$

(d)
$$\left[12 \, km^2 \beta\right]^{-1}$$

The time period of a particle of mass m, undergoing small oscillations around x = 0, in the potential

$$V = V_0 \cosh\left(\frac{x}{L}\right)$$
, is

(a)
$$\pi \sqrt{\frac{mL^2}{V_0}}$$

), is
$$\frac{mL^2}{2V_0}$$
 (c) 2

(c)
$$2\pi \sqrt{\frac{mL^2}{V_0}}$$

(d)
$$2\pi \sqrt{\frac{2mL^2}{V_0}}$$

- $(c) 2\pi \sqrt{\frac{mL^2}{\tilde{V}_0}}$ vistic spir Consider the decay $A \to B + C$ of a relativistic spin $-\frac{1}{2}$ particle A. Which of the following statements is true in the rest frame of the particle A?
 - (a) The spin of both B and C may be
 - (b) The sum of the masses of B and C is greater than the mass of A
 - (c) The energy of B is uniquely determined by the masses of the particles (d) The spin of both R and C may be a set of the particles.
 - (d) The spin of both B and C may be intergal
- Two current-carrying circular loops, each of radius R, are placed perpendicular to each other, as shown in the figure. The loop in the xy-plane carries a current I_0 while that in the xz-plane carries a current $2I_0$. The resulting magnetic field \vec{B} at the origin is

(b)
$$\frac{\mu_0 I_0}{2R} \left[2\hat{j} - \hat{k} \right]$$

(c)
$$\frac{\mu_0 I_0}{2R} \left[-2\hat{j} + \hat{k} \right]$$

An electric dipole of dipole moment $\vec{p} = qb\hat{i}$ is placed at origin in the vicinity of two charges +q-q at (L,b) and (L,-b), respectively, as shown in the figure.

The electrostatic potential at the point $\left(\frac{L}{2}, 0\right)$

(a)
$$\frac{qb}{\pi\varepsilon_0} \left(\frac{1}{L^2} + \frac{2}{L^2 + 4b^2} \right)$$

(b)
$$\frac{4qbL}{\pi\varepsilon_0 \left[L^2 + 4b^2\right]^{3/2}}$$

(c)
$$\frac{qb}{\pi \varepsilon_0 L^2}$$

(d)
$$\frac{3qb}{\pi \varepsilon_0 L^2}$$

A monochromatic and lineary polarized light is used in a Young's double slit experiment. A linear polarizer whose pass axis is at an angle 45° to the polarization of the incident wave, is placed in front of one of the slits. If $I_{\rm max}$ and $I_{\rm min}$, respectively, denote the maximum and minimum intensities of the interference pattern on the screen, the visibility, defined as the ratio $\frac{I_{\rm max}=I_{\rm min}}{I_{\rm max}+I_{\rm min}}$, is (a) $\frac{\sqrt{2}}{3}$ (b) $\frac{2}{3}$ (c) $\frac{2\sqrt{2}}{3}$

(a)
$$\frac{\sqrt{2}}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{2\sqrt{2}}{3}$$

(d)
$$\sqrt{\frac{2}{3}}$$

33. An electromagnetic wave propagates in a nonmagnetic medium with relative permittivity ε magnetic field for this wave is $\hat{k}H_0 \cos(\omega t - \alpha x - \alpha\sqrt{3}y)$

where H_0 is a constant. The corresponding electric field $\vec{E}(x,y)$ is

where
$$H_0$$
 is a constant. The corresponding electric field $\vec{E}(x,y)$ is
$$(a) \frac{1}{4} \mu_0 H_0 c \left(-\sqrt{3}\hat{i} + \hat{j}\right) \cos\left(\omega t - \alpha x - \alpha\sqrt{3}y\right) (b) \frac{1}{4} \mu_0 H_0 c \left(\sqrt{3}\hat{i} + \hat{j}\right) \cos\left(\omega t - \alpha x - \alpha\sqrt{3}y\right)$$

$$(c) \frac{1}{4} \mu_0 H_0 c \left(\sqrt{3}\hat{i} - \hat{j}\right) \cos\left(\omega t - \alpha x - \alpha\sqrt{3}y\right) (d) \frac{1}{4} \mu_0 H_0 c \left(-\sqrt{3}\hat{i} - \hat{j}\right) \cos\left(\omega t - \alpha x - \alpha\sqrt{3}y\right)$$

(c)
$$\frac{1}{4}\mu_0H_0c\left(\sqrt{3}\hat{i}-\hat{j}\right)\cos\left(\omega t-\alpha x-\alpha\sqrt{3}y\right)$$
 (d) $\frac{1}{4}\mu_0H_0c\left(-\sqrt{3}\hat{i}-\hat{j}\right)\cos\left(\omega t-\alpha x-\alpha\sqrt{3}y\right)$

4. The ground state energy of an anisotropic harmonic oscillator described by the potential

$$V(x, y, z) = \frac{1}{2}m\omega^2 x^2 + 2m\omega^2 y^2 + 8m\omega^2 z^2 \text{ (in units of } \hbar\omega \text{) is}$$

HE	(a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2}$
35.	The product $\Delta x \Delta p$ of uncertainites in the position and momentum of a simple harmonic oscillator
	mass m and angular frequency ω in the ground state $ 0\rangle$, is $\frac{\hbar}{2}$. The value of the product $\Delta x \Delta p$
SEP SEP	the state, $e^{-i\hat{p}\ell/\hbar} \ket{0}$ (where l is a constant and \hat{p} is the momentum operator) is
JASS	(a) $\frac{\hbar}{2}\sqrt{\frac{m\omega l^2}{\hbar}}$ (b) \hbar (c) $\frac{\hbar}{2}$ (d) $\frac{\hbar^2}{m\omega l^2}$ Let the wavefunction of the electron in a hydrogen atom be
36.	Let the wavefunction of the electron in a hydrogen atom be
TIMIST	Let the wavefunction of the electron in a hydrogen atom be $\psi(\vec{r}) = \frac{1}{\sqrt{6}} \phi_{200}(\vec{r}) + \sqrt{\frac{2}{3}} \phi_{21-1}(\vec{r}) - \frac{1}{\sqrt{6}} \phi_{100}(\vec{r})$
DII	where $\phi_{nlm}(\vec{r})$ are the eigenstates of the Hamiltonian in the standard notation. The expectation val
EOI	of the energy in this state is
TE C	of the energy in this state is (a) $-10.8eV$ (b) $-6.2eV$ (c) $-9.5eV$ (d) $-5.1eV$
Thi	
37.	Three identical spin $\frac{1}{2}$ particle of mass m are confined to a one-dimensional box of lenght L, but are
ES	otherwise free. Assuming that they are non-interacting, the energies of the lowest two energy eiger
LASSE	otherwise free. Assuming that they are non-interacting, the energies of the lowest two energy eiger states, in units of $\frac{\pi^2 \hbar^2}{2mL^2}$, are (a) 3 and 6 (b) 6 and 9 (c) 6 and 11 (d) 3 and 9 The heat capacity C_V at constant volume of a metal, as a function of temperature, is $\alpha T + \beta T^3$, where αV and βV are constant. The temperature dependence of the entremy of constant volume is
	(a) 3 and 6 (b) 6 and 9 (c) 6 and 11 (d) 3 and 9
38.	The heat capacity C_{ν} at constant volume of a metal, as a function of temperature, is $\alpha T + \beta T^3$,
ST	where α and β are constants. The temperature dependence of the entropy at constant volume is
DALIM	(a) $\alpha T + \frac{1}{3}\beta T^3$ (b) $\alpha T + \beta T^3$ (c) $\frac{1}{2}\alpha T + \frac{1}{3}\beta T^3$ (d) $\frac{1}{2}\alpha T + \frac{1}{4}\beta T^3$
O _K	
39.	The rotational energy levels of a molecule are $E_i = \frac{\hbar^2}{2I_0}l(l+1)$, where $l=0,1,2,$ and I_0 is its
THEO	moment of inertia. The contribution of the rotational motion to the Helmholtz free energy per mol-
TH	ecule, at low temperatures in a dilute gas of these molecules, is approximately
S	ecule, at low temperatures in a dilute gas of these molecules, is approximately (a) $-k_BT\left(1+\frac{\hbar^2}{I_0k_bT}\right)$ (b) $-k_BTe^{-\frac{\hbar^2}{I_0k_BT}}$ (c) $-k_BT$ (d) $-3k_BTe^{\frac{\hbar^2}{I_0k_BT}}$ The vibrational motion of a diatomic molecule may be considered to be that of a simple harmonic
40.	The vibrational motion of a diatomic molecule may be considered to be that of a simple harmonic
NAS.	oscillator with angular frequency ω . If a gas of these molecules is at temperatue T, what is the pro-
Or	ability that a randomly picked molecule will be found in its lowest vibrational state?

Consider an ideal Fermi gas in a grand canonical ensemble at a constant chemical potential. The variance of the occupation number of the single particle energy level with mean occupation number \overline{n} is

(d) $\frac{1}{2}\operatorname{cosec} h\left(\frac{\hbar\omega}{2k_BT}\right)$

- THE OPTIMIST CLASSES
- $\frac{1}{\sqrt{42}} \sqrt{(a)} \, \overline{n} \left(1 \overline{n}\right)$ THE OPTIMIST CLASSES THE OF

- (a) connect Q to pin 1 and \bar{Q} to pin 2 (b) connect Q to pin 2 and \bar{Q}

 - (d) connect Q to J input and \overline{Q} to J input 43. The truth table below Y can be represented by

(a)
$$Y = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C + AB\overline{C}$$

(b)
$$Y = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + ABC$$

(c)
$$Y = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

(d)
$$Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

THE OPTIMIST CLK B THE REPORT OF THE PROPERTY OF THE OPTIMIST CLASSIS THE OPTIMIST CLASSIS.
$(K_{20} B) \longrightarrow (K_{20} B)$
St The Print St. St. Little Blink St. St. Little Blink St. Ch.
Which of the following connections will allow the entire circuit to act as a JK flip-flop? (a) connect Q to pin 1 and \overline{Q} to pin 2 (b) connect Q to pin 2 and \overline{Q} to pin 1 (c) connect Q to K input and \overline{Q} to F input
(b) connect Q to pin 2 and \bar{Q} to pin 1
(d) connect O to Linguit and A to Kinguit
The truth table below gives the value $V(ABC)$ where AB and C are hinary variables. The output
Y can be represented by
OPTIME IST CLE ASSES THE OPTIME IST CLE SSES THE OPTIME STOLE SSES
(a) $Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$
THE OPTIMIS ISTOLAR SSES THEOTOGRAPH OST O SS 1 OF PRIMISE SSE
(b) $Y = \overline{ABC} + \overline{ABC} + ABC$
$(c) Y = \overline{ABC} + \overline{ABC} + ABC$
(b) $Y = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + ABC$ (c) $Y = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$ (d) $Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C}$ A sinusoidal signal is an input to the following circuit
(d) $Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C}$
(d) $Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$ 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A sinusoidal signal is an input to the following circuit
Primisordar signar is an impact to introduce wing circuit series with the primisordar series with the primisordar series with the contract of the series with
A sinusoidal signal is an input to the following circuit
THE OF THIS (0.0) THE OF THIS OF THE OF THIS TO LASSES A THE OF
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$

THE OPTIMIST CLAS

voltage is V_b

The Green's function G(x,x') for the equation $\frac{d^2y(x)}{dx^2} = f(x), \text{ where } f(x) = f(x)$

(a)
$$G(x,x') = \begin{cases} \frac{1}{2}x(1-x'), & 0 < x < x' < 1 \\ \frac{1}{2}x'(1-x), & 0 < x' < x < 1 \end{cases}$$
 (b) $G(x,x') = \begin{cases} x(x'-1), & 0 < x < x' < 1 \\ x'(1-x), & 0 < x' < x < 1 \end{cases}$

(a)
$$G(x,x') = \begin{cases} \frac{1}{2}x(1-x'), & 0 < x < x' < 1 \\ \frac{1}{2}x'(1-x), & 0 < x' < x < 1 \end{cases}$$
 (b) $G(x,x') = \begin{cases} x(x'-1), & 0 < x < x' < 1 \\ x'(1-x), & 0 < x' < x < 1 \end{cases}$ (c) $G(x,x') = \begin{cases} -\frac{1}{2}x(1-x'), & 0 < x < x' < 1 \\ \frac{1}{2}x'(1-x), & 0 < x' < x < 1 \end{cases}$ (d) $G(x,x') = \begin{cases} x(x'-1), & 0 < x < x' < 1 \\ x'(x-1), & 0 < x < x' < 1 \end{cases}$ 47. A 4×4 complex matrix A satisfies the relation $A^{\dagger}A = 4I$, where I is the 4×4 identity matrix. The number of independent real parameters of A is (a) 32 (b) 10 (c) 12 (d) 16

- THE OPT (d) 16

- orinda (a) 32 48. The contour C of the following integral $\oint_c dz \frac{\sqrt{(z-1)(z-3)}}{\left(z^2-25\right)^3} i$ figure below. in the complex z-plane is shown in the

- (a) 0.30
- (c) 0.34
- (d) 0.27
- The motion of a particle in one dimension is described by the Langrangian $L = \frac{1}{2} \left(\left(\frac{dx}{dt} \right)^2 x^2 \right)$ in suitable units. The value of the action along the classical path from x = 0 at t = 0 to $x = x_0$ at $t = t_0$, is

units. The value of the action along the classical path from x = 0 at t = 0 to $x = x_0$ at $t = t_0$, is

(a) $\frac{x_0^2}{2\sin^2 t_0}$ (b) $\frac{1}{2}x_0^2 \tan t_0$ (c) $\frac{1}{2}x_0^2 \cot t_0$ (d) $\frac{x_0^2}{2\cos^2 t_0}$

- $(d) \frac{x_0^2}{2\cos^2 t}$

DIMIS TOLAS SEES THE OF STIMIS TOLASS SEES THE OF TIMIS TOLASS SEED OF
51. The Hamiltonian of a classical one-dimensional harmonic oscillator is $H = \frac{1}{2}(p^2 + x^2)$, in suitable units. The total time derivative of the dynamical variable $(p + \sqrt{2}x)$ is (a) $\sqrt{2}p - x$ (b) $p - \sqrt{2}x$ (c) $p + \sqrt{2}x$ (d) $x + \sqrt{2}p$ 52. A relativistic particle of mass m and charge e is moving in a uniform electric field of strength e . Starting from rest at $e = 0$, how much time will it take to reach the speed $\frac{c}{2}$?
THEOR CLASS CLASS CLASS CLASS CLASS CLASS CLASS CLASS CHEOR CLASS CES
The total time derivative of the dynamical variable $(p + \sqrt{2}x)$ is (a) $\sqrt{2}p - x$ (b) $p - \sqrt{2}x$ (c) $p + \sqrt{2}x$ (d) $x + \sqrt{2}p$ 52 A relativistic particle of mass m and charge e is moving in a uniform electric field of strength e
(a) $\sqrt{2}p - x$ (b) $p - \sqrt{2}x$ (c) $p + \sqrt{2}x$ (d) $x + \sqrt{2}p$
32. A relativistic particle of mass m and charge e is moving in a uniform electric field of strength E.
52. A relativistic particle of mass m and charge e is moving in a uniform electric field of strength ε . Starting from rest at $t = 0$, how much time will it take to reach the speed $\frac{c}{2}$? (a) $\frac{1}{\sqrt{3}} \frac{mc}{e\varepsilon}$ (b) $\frac{mc}{e\varepsilon}$ (c) $\sqrt{2} \frac{mc}{e\varepsilon}$ (d) $\sqrt{\frac{3}{2}} \frac{mc}{e\varepsilon}$ 53. In an inertial frame uniform electric and magnetic field \vec{E} and \vec{B} are perpendicular to each other and satisfy $ \vec{E} ^2 - \vec{B} ^2 = 29$ (in suitable units). In another inertial frame, which moves at a constant velocity with respect
$\frac{1}{2} \frac{mc}{mc} = \frac{1}{2} \frac{mc}{mc} = \frac{1}$
TIME TO THE STATE OF THE STATE
53. In an inertial frame uniform electric and magnetic field \vec{E} and \vec{B} are perpendicular to each other and satisfy
$\left \vec{E}\right ^2 - \left \vec{B}\right ^2 = 29$ (in suitable units). In another inertial frame, which moves at a constant velocity with respect
to the first frame, the magnetic field is $2\sqrt{5}\hat{k}$. In the second frame, an electric field consistent with the
previous observations is
(a) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$ (b) $7(\hat{i}+\hat{k})$ (c) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$ (d) $7(\hat{i}+\hat{j})$
to the first frame, the magnetic field is $2\sqrt{3}k$. In the second frame, an electric field consistent with the previous observations is (a) $\frac{7}{\sqrt{2}}(\hat{i}+\hat{j})$ (b) $7(\hat{i}+\hat{k})$ (c) $\frac{7}{\sqrt{2}}(\hat{i}+\hat{k})$ (d) $7(\hat{i}+\hat{j})$ 54. Electromagnetic wave of angular frequency ω is propagating in a medium in which, over a band of frequencies the refractive index is $n(\omega) \approx 1 - \left(\frac{\omega}{\omega_0}\right)^2$, where ω_0 is a constant. The ratio $\frac{v_B}{v_p}$ of the group velocity to the phase velocity at $\omega = \frac{\omega_0}{2}$ is (a) 3 (b) $\frac{1}{4}$ (c) $\frac{2}{3}$ (d) 2 55. A rotating spherical shell of uniform surface charge and mass density has total mass M and charge Q . If its angular momentum is L and magnetic moment is μ , then the ratio $\frac{\mu}{L}$ is
frequencies the refractive index is $n(\omega) \approx 1 - \left(\frac{\omega}{2}\right)^2$, where ω_0 is a constant. The ratio $\frac{V_g}{g}$ of the
31 CL ASSES THE OPTIME STOLE ASSES THE VP OPTIME STOLE ASSES
group velocity to the phase velocity at $\omega = \frac{\omega_0}{2}$ is
My ASSES THE OPTIME OF THE OPTIME
(a) 3 (a) 3 (b) 4 (b) 4 (c) 5 (c) 6 (c) 7 (d) 2 (d) 2 (d) 2 (d) 3 (d) 4 (d) 2 (d) 6 (d) 6 (d) 6 (d) 6 (d) 7 (d) 8 (d) 9 (d)
55. A rotating spherical shell of uniform surface charge and mass density has total mass M and charge Q .
55. A rotating spherical shell of uniform surface charge and mass density has total mass M and charge Q . If its angular momentum is L and magnetic moment is μ , then the ratio $\frac{\mu}{L}$ is (a) $\frac{Q}{3M}$ (b) $\frac{2Q}{3M}$ (c) $\frac{Q}{2M}$ (d) $\frac{3Q}{4M}$ 56. Consider the operator $A_x = L_y p_z - L_z p_y$, where L_i and p_i denote, respectively, the components of the angular momentum and momentum operators. The commutator $[A_x, x]$, where x is the x -component of the position operator, is
S THE OPTIME OF THE 2Q TOPTIME OF THE 3Q THE ASSESS THE STATE OF THE S
(a) $\frac{3M}{3M}$ (b) $\frac{3M}{3M}$ (c) $\frac{2M}{2M}$ (d) $\frac{4M}{4M}$ (d) $\frac{4M}{4M}$
56. Consider the operator $A_x = L_y p_z - L_z p_y$, where L_i and p_i denote, respectively, the components of
the angular momentum and momentum operators. The commutator $[A_x, x]$, where x is the x-compo-
the angular momentum and momentum operators. The commutator $[A_x, x]$, where x is the x -component of the position operator, is (a) $-i\hbar(zp_z + yp_y)$ (b) $-i\hbar(zp_z - yp_y)$ (c) $i\hbar(zp_z + yp_y)$ (d) $i\hbar(zp_z - yp_y)$
(a) $-in(zp_z + yp_y)$ (b) $-in(zp_z - yp_y)$ (c) $in(zp_z + yp_y)$ (d) $in(zp_z - yp_y)$
57. A one-dimensional system is described by the Hamiltonian $H = \frac{p^2}{7m} + \lambda x $ (where $\lambda = 0$). The
ground state energy varies as a function of λ as
the angular momentum and momentum operators. The commutator $[A_x, x]$, where x is the x -component of the position operator, is (a) $-i\hbar(zp_z + yp_y)$ (b) $-i\hbar(zp_z - yp_y)$ (c) $i\hbar(zp_z + yp_y)$ (d) $i\hbar(zp_z - yp_y)$ 57. A one-dimensional system is described by the Hamiltonian $H = \frac{p^2}{zm} + \lambda x $ (where $\lambda = 0$). The ground state energy varies as a function of λ as (a) $\lambda^{5/3}$ (b) $\lambda^{2/3}$ (c) $\lambda^{4/3}$ (d) $\lambda^{1/3}$ 58. If the position of the electron in the ground state of a Hydrogen atom is measured, the probability that
58. If the position of the electron in the ground state of a Hydrogen atom is measured, the probability that

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092 CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com it will be found at a distance $r \ge a_0$ (a_0 being Bohr radius) is nearest to (c) 0.32 (a) 0.91 (b) 0.66

A system of spin $\frac{1}{2}$ particles is prepared to be in the eigenstate of σ_z with eigenvalue ± 1 . The system is rotated by at angle 60° about the x-axis. After the rotation, the fraction of the particles that will be measured to be in the eigenstate of σ_z with eigenvalue +1 is

The Hamiltonian of a one-dimensional Ising model of N spin (N large) is

 $\beta = \frac{1}{k_B T}, \text{ the correlation}$ (d) where the spin $\sigma_i = \pm 1$ and J is a positive costant. At inverse temperature β

function between the nearest spins $(\sigma_i \sigma_{i+1})$ is

(c) $\tanh(\beta J)$ (d) $\coth(\beta J)$

At low temperatures, in the Debye approximation, the contribution of the phonons to the heat capac ity of a two dimensional solid is proportional to

(b) T³

A particle hops on a one-dimensional lattice with lattice spacing a. The probability of the particle to hop to the neighbouring site to its right is p, while the corresponding probability to hop to the left is

q = 1 - p. The root-mean squared deviation $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ in displacement after N steps, is

(b) $aN\sqrt{pq}$ (c) $2a\sqrt{Npq}$

The energy levels accessible to a molecule have energies $E_1=0, E_2=\Delta$ and $E_3=2\Delta$ (where Δ is a constant volume in the high temperature limit $(k_B T \gg \Delta)$ varies with temperature as constant). A gas of these molecules is in thermal equilibrium at temperature T. The specific heat at

The input V_i to the following circuit is a square wave as shown in the following figure which of the waveforms best describes the output?

The amplitude of a carrier signal of frequency f_0 is sinusoildally modulated at a frequency Which of the following graphs best describes its power spectrum?

The standard deviation of the following set of data {10.0,10.0,9.9,9.9,9.8,9.9,9.9,9.9,9.8,9.9} is nearest to

(a) 0.10

(b) 0.07

(d) 0.04

The diatomic molecule HF has an absorption line in the rotational band at $40 \, cm^{-1}$ for the isotope

(a) $0.05 \, cm^{-1}$

will be shifted by approximately (b) $0.11cm^{-1}$ (c) $0.33cm^{-1}$ (d) $0.01cm^{-1}$ The excited state (n=4,l=2) of an election in an atom may decay to one or more of the lower energy levels shown in the diagram below. energy levels shown in the diagram below.

A silicon crystal is doped with phosphorus atoms. (The binding energy of a H atom is 13.6 eV, the dielectric constant of silicon is 12 and the effective mass of electons in the crystal is $0.4 m_{\odot}$). The gap between the donor energy level and the bottom of the conduction band is nearest to

(a) 0.01*eV*

(b) 0.08 eV

(c) $0.02\,eV$

(d) $0.04\,eV$

Assume that pion-nucleon scatterina at low energies, in which isospin is conserved is described by the effective interaction potential $V_{eff} = F(r)\vec{I}_{\pi}, \vec{I}_{N}$, where F(r) is a function of the radial separation rand \vec{I}_{π} and \vec{I}_{N} denote, respectively, the isospin vectors of a pion and the nucleon. The ratio

scattering cross-sections corresponding to total isospins $I = \frac{3}{2}$ and $\frac{1}{2}$ is

(b)

(d) 2

A nucleus decays by the emission of a gamma ray from an excited state of spin parity 2+

THE OPTIMIS ground state with spin-parity 0⁺ what is the type of the corresponding radiation?

(a) magnetic dipole

(b) electric quadrum 1

(c) electric dipole

- revels
 FIFE OPTIMIST CLASSES
 FIFE OPTIMIST CLASSES

$\frac{1}{2} \frac{1}{2} \frac{1}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
STOLL ASSES THE OPTIME STOLL ASSES THE OPTIME STOLE SEES THE OPTIME STOLE
THE OPTIMITY OF THE SEES THE SEES THE SEES THE SEES THE SET OF THE SEES THE SET OF THE SEES THE SET OF THE SET
TIME TELECTIFE SEES THE OPTIME STOLE SEES THE OF TH
OPTIMITET CLASSES THE OPTIMITE ST DE THE OF
$E_{1}=1.35 MeV$ $E_{2}=1.17 MeV$ $E_{3}=1.25 MeV$ $E_{4}=0.56 MeV$ $E_{5}=1.17 MeV$ $E_{1}=0.56 MeV$ $E_{1}=0.56 MeV$ $E_{2}=1.17 MeV$ $E_{3}=0.56 MeV$ $E_{4}=0.56 MeV$ $E_{5}=0.56 MeV$ $E_{5}=0.56 MeV$ $E_{6}=0.00 eV$ $E_{1}=0.56 MeV$ $E_{1}=0.56 MeV$ $E_{2}=0.56 MeV$ $E_{3}=0.56 MeV$ $E_{4}=0.56 MeV$ $E_{5}=0.56 MeV$ $E_{5}=0.56 MeV$ $E_{6}=0.00 eV$ $E_{7}=0.00 eV$ $E_{7}=0.00 eV$ $E_{8}=0.00 eV$ $E_{9}=0.00 eV$ $E_{1}=0.56 MeV$ $E_{1}=0.56 MeV$ $E_{2}=0.56 MeV$
THE RETURN STOLE SSES THE RETURN STOLE SSES THE DETIME TO CLAR SSES THE
The spin-parity j^p of the level E_1 is
The spin-parity j^p of the level E_1 is (a) 1^+ (b) 1^- (c) 2^- ANSWER KEY
ANSWERKEY
The spin-parity f^{ρ} of the level E_{i} is (a) 1. (b) 1 (c) 2 (d) 2. (d) 2. (d) 2. (e) 23. (b) 24. (c) 25. (b) 26. (d) 2. (d) 2. (e) 27. (e) 28. (e) 29. (e) 30. (e) 31. (e) 32. (b) 33. (a) 34. (b) 35. (e) 36. (d) 37. (b) 38. (a) 39. (d) 40. (a) 41. (a) 42. (b) 43. (b) 43. (b) 43. (b) 43. (c) 45. (c) 46. (d) 47. (d) 48. (b) 49. (c) 50. (e) 51. (a) 52. (b) 59. (d) 60. (e) 61. (a) 62. (e) 63. (d) 64. (e) 65. (b) 66. (b) 67. (b) 68. (a) 69. (e) 70. (a) 71. (a) 72. (d) 73. (b) 74. (b) 75. (d)
27. (c) 28. (c) 29. (c) 30. (e) 31. (c) 32. (b)
33, (a) 34. (b) 35. (c) 36. (d) 37. (b) 38. (a) 39. (d) 40. (a) 41. (a) 42. (b) 43. (b) 44. (a)
45. (c) 46. (d) 47. (d) 48. (b) 49. (c) 50. (c)
51. (a) 52. (a) 53. (a) 54. (a) 55. (c) 56. (a) 57. (b) 58. (b) 59. (d) 60. (e) 61. (a) 62. (c)
63. (d) 64. (c) 65. (b) 66. (b) 67. (b) 68. (a)
75. (d) 70. (a) 71. (a) 72. (d) 73. (b) 74. (b) 75.
THEOR SOUTHIES OF CLASS SEES THEOR STIMIS TO CLASS SEES THEOR STIMIST TO CLASS SEES THE
S THEOLOGIAN SEES THEORY STIMIST CLASS SEES THEORY STIMIST CLASS SEES THEORY STIMIST CLASS SEES THE
ESES THEOLOGIANDS SES THEOLOGIANS SES THEOLOGIANS SES THEOLOGIANS SES
SES THEORY CLASS SES THEORY CLASS SES THEORY CLASS SES THEORY TIMES CLASS SE
CLASSES THEOR DEIMIST CLASS SEES THEOR TIMES CLASS SEES THEORY TIMES CLASS
AFTIMIST CLASSES THE OPTIMIST
MS CLASS THEOR STIMIS TOLAS SEE THEORY TOLASS SEE THEORY
O'THIS OF CLASS SEES FIFTH OF STIMIST OF ASES FIFTH OF FINIST OF ASES OF THE OF A TIMIST
TOTAL SES THEORY THEORY THEORY THEORY
SSES THE OPTIMIST CLASSES THE
THEO, STIMIS, TOLDS, CSES, THEOF, STIMIS! TOLDS, CLASS, SES, THEOP, STIMIS! TOLDS, SES, STEP, OF
ALLASSES THE OPTIME TOLLASSES
The spin-parity j ^p of the level E ₁ is (a) 1